Coal Geology & Exploration
Abstract
Background The Dananhu mining area boasts abundant coal resources, serving as a significant coal-fired power generation base in Xinjiang, China. However, the high sodium (Na) content in coals within the mining area tends to cause fouling and slagging during coal combustion, severely affecting the clean and efficient utilization of coal resources in the area. Methods and Results epresentative samples collected from the major mineable coal seams were subjected to proximate and ash-composition analyses. The analytical results show that the coal samples had low ash and sulfur contents and high volatile content. SiO2 predominated in the ash components, followed by CaO, Al2O3, and Fe2O3. Additionally, Na2O exhibited an average mass fraction of 4.83% in the ash composition, indicating typical high-Na coals. The Na content in the coal ashes displayed distinct vertical differentiation, showing a pronounced decreasing trend with an increase in the coal seam depth. The correlations between proximate analysis indices and ash components indicate that Na in the coals primarily occurs as organic Na, followed by water-soluble Na. The geological factors influencing Na enrichment in the coals were analyzed by combining the swamp environment and plant types during the coal-forming period, the stratigraphic evolutionary patterns after coal formation, and the groundwater characteristics. The analytical results reveal that high-salinity groundwater serves as a primary source of Na in coals within the mining area, with the groundwater conditions determining the Na content in the coals. Conclusions Further investigation into the mechanisms underlying Na enrichment in the coals reveals that Na in the coals originated from magmatic rocks in the periphery of the mining area. After rock weathering and leaching, the produced Na was transported into sags by surface runoff and precipitation. Then, it infiltrated into groundwater through rock fractures and finally entered the coal seams. Consequently, the groundwater salinity increased. During the long-term interactions between high-salinity groundwater and coal seams, the organic functional groups in the coals were progressively bound with the Na+ in groundwater, leading to the formation of organic Na, while water-soluble Na occurred in substantial pore structures within the coals. Given the actual conditions of the mining area, two Na removal methods are applicable: washing with Na-removing agents and the co-combustion of coals with additives. Specifically, low-concentration organic acid and ammonium salt solutions, as Na-removing agents, can accurately remove organic and water-soluble Na in the coals. Additionally, adding an appropriate proportion of low-Na coals for co-combustion or incorporating a proper quantity of Na-fixing agents can effectively mitigate or eliminate the slagging phenomenon during coal combustion.
Keywords
high-sodium coal, Turpan-Hami Basin, Dananhu mining area, Xishanyao Formation, enrichment mechanism, Na removal
DOI
10.12363/issn.1001-1986.25.04.0254
Recommended Citation
QI Zhenghui, SUN Fanxing, WANG Wenlong,
et al.
(2025)
"Mechanisms underlying sodium enrichment in coals in the Dananhu mining area, Turpan-Hami Basin,"
Coal Geology & Exploration: Vol. 53:
Iss.
12, Article 17.
DOI: 10.12363/issn.1001-1986.25.04.0254
Available at:
https://cge.researchcommons.org/journal/vol53/iss12/17
Reference
[1] 谢和平,吴立新,郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报,2019,44(7):1949−1960.
XIE Heping,WU Lixin,ZHENG Dezhi. Prediction on the energy consumption and coal demand of China in 2025[J]. Journal of China Coal Society,2019,44(7):1949−1960.
[2] 蔡瑞春,柳俊,聂新辉. 我国煤炭清洁高效利用发展路径研究[J]. 煤炭经济研究,2024,44(12):100−105.
CAI Ruichun,LIU Jun,NIE Xinhui. Research on the development path of clean and efficient utilization of coal in China[J]. Coal Economic Research,2024,44(12):100−105.
[3] 邵龙义,张亚星,耿苏倩,等. 煤矿固体废弃物理化特征及生态环境影响研究[J]. 矿业科学学报,2024,9(5):653−667.
SHAO Longyi,ZHANG Yaxing,GENG Suqian,et al. Physicochemical characteristics and environmental impact of coal mine solid waste[J]. Journal of Mining Science and Technology,2024,9(5):653−667.
[4] 中国煤炭地质总局. 中国煤炭资源赋存规律与资源评价[M]. 北京:科学出版社,2016.
[5] 梁开华,齐争辉,王文龙,等. 吐哈盆地大南湖煤田西段中侏罗世西山窑组古地理及聚煤模式[J/OL]. 煤炭学报,2025:1–11 [2025-02-21]. https://link.cnki.net/doi/10.13225/j.cnki.jccs.2024.1231.
LIANG Kaihua,QI Zhenghui,WANG Wenlong,et al. Paleogeography and coal accumulation model of the middle Jurassic Xishanyao Formation in western Dananhu coalfield of Turpan–Hami Basin[J/OL]. Journal of China Coal Society,2025:1–11 [2025-02-21]. https://link.cnki.net/doi/10.13225/j.cnki.jccs.2024.1231.
[6] 绿色矿山网. 新疆第二大超级煤炭资源分布区,预测储量超7000亿吨[EB/OL]. (2025-02-10) [2025-08-06]. https://www. zyny. org. cn/newsinfo/8015058. html.
[7] LI Yanan,SHAO Longyi,FIELDING C R,et al. Sequence stratigraphy,paleogeography,and coal accumulation in a lowland alluvial plain,coastal plain,and shallow–marine setting:Upper Carboniferous–Permian of the Anyang–Hebi coalfield,Henan Province,North China[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2021,567:110287.
[8] WANG Chang’an,TANG Guantao,SUN Ruijin,et al. The correlations of chemical property,alkali metal distribution,and fouling evaluation of Zhundong coal[J]. Journal of the Energy Institute,2020,93(6):2204−2214.
[9] 杨承伟,丁华,白向飞,等. 新疆高钠煤中钠元素的地球化学研究现状[J]. 煤炭科学技术,2022,50(10):169−178.
YANG Chengwei,DING Hua,BAI Xiangfei,et al. Geochemical research status of sodium element in high–sodium coal in Xinjiang[J]. Coal Science and Technology,2022,50(10):169−178.
[10] 张双全. 煤化学(第4版)[M]. 徐州:中国矿业大学出版社,2015.
[11] 张守玉,陈川,施大钟,等. 高钠煤燃烧利用现状[J]. 中国电机工程学报,2013,33(5):1−12.
ZHANG Shouyu,CHEN Chuan,SHI Dazhong,et al. Situation of combustion utilization of high sodium coal[J]. Proceedings of the CSEE,2013,33(5):1−12.
[12] QUEROL X,WHATELEY M K G,FERNÁNDEZ–TURIEL J L,et al. Geological controls on the mineralogy and geochemistry of the Beypazari lignite,central Anatolia,Turkey[J]. International Journal of Coal Geology,1997,33(3):255−271.
[13] DURIE R A. The science of Victorian brown coal[M]. Amsterdam:Elsevier,1991.
[14] 王越,丁华,白向飞,等. 高钠煤的赋存状态及沾污抑制行为研究进展[J]. 煤质技术,2016,31(5):1−9.
WANG Yue,DING Hua,BAI Xiangfei,et al. Research progress of occurrence of high sodium coal and restrain of its fouling behavior[J]. Coal Quality Technology,2016,31(5):1−9.
[15] 刘大海,张守玉,陈川,等. 新疆高钠煤脱钠提质过程中钠存在形式[J]. 煤炭学报,2014,39(12):2519−2524.
LIU Dahai,ZHANG Shouyu,CHEN Chuan,et al. Existence form of sodium in the high sodium coals from Xinjiang during its sodium removal process[J]. Journal of China Coal Society,2014,39(12):2519−2524.
[16] 翁青松,王长安,车得福,等. 准东煤碱金属赋存形态及对燃烧特性的影响[J]. 燃烧科学与技术,2014,20(3):216−221.
WENG Qingsong,WANG Chang’an,CHE Defu,et al. Alkali metal occurrence mode and its influence on combustion characteristics in Zhundong coals[J]. Journal of Combustion Science and Technology,2014,20(3):216−221.
[17] 白向飞,王越,丁华,等. 准东煤中钠的赋存状态[J]. 煤炭学报,2015,40(12):2909−2915.
BAI Xiangfei,WANG Yue,DING Hua,et al. Modes of occurrence of sodium in Zhundong coal[J]. Journal of China Coal Society,2015,40(12):2909−2915.
[18] 王昱龙. 新疆准东煤田高钠煤的地球化学特征及燃烧固钠研究:以宜化煤矿为例[D]. 徐州:中国矿业大学,2024.
WANG Yulong. Geochemical characteristics of high sodium coal and sodium fixation during combustion in the Zhundong coalfield,Xinjiang:A case study of the Yihua coal mine[D]. Xuzhou:China University of Mining and Technology,2024.
[19] 邵龙义,高迪,罗忠,等. 新疆吐哈盆地中、下侏罗统含煤岩系层序地层及古地理[J]. 古地理学报,2009,11(2):215−224.
SHAO Longyi,GAO Di,LUO Zhong,et al. Sequence stratigraphy and palaeogeography of the Lower and Middle Jurassic coal measures in Turpan–Hami Basin[J]. Journal of Palaeogeography,2009,11(2):215−224.
[20] QIN Zhen,TAO Huifei,XIE Zaibo,et al. Petrogenesis and geodynamic implications of the Late Devonian dioritic and granitic intrusive rocks in the Dananhu Belt,eastern Tianshan Orogenic Belt[J]. Heliyon,2024,10(4):e26053.
[21] HENDRIX M S,BRASSELL S C,CARROLL A R,et al. Sedimentology,organic geochemistry,and petroleum potential of Jurassic coal measures:Tarim,Junggar,and Turpan Basins,Northwest China[J]. AAPG Bulletin,1995,79(7):929−958.
[22] 黄杨杨,李新宁,黄蝶芳,等. 中侏罗世泥炭地净初级生产力及其对全球碳循环的响应:以吐哈盆地沙尔湖煤田为例[J]. 第四纪研究,2023,43(6):1562−1572.
HUANG Yangyang,LI Xinning,HUANG Diefang,et al. Net primary productivity of Middle Jurassic peatlands and its response to global carbon cycle:An example from Shaerhu coalfield in Tuha Basin[J]. Quaternary Sciences,2023,43(6):1562−1572.
[23] 何建国,张静,马荣,等. 吐哈盆地大南湖矿区煤岩煤质特征及成煤环境分析[J]. 中国煤炭,2022,48(1):63−69.
HE Jianguo,ZHANG Jing,MA Rong,et al. Analysis of coal rock and coal quality characteristics and coal forming environment in Dananhu mining area in Turpan–Hami Basin[J]. China Coal,2022,48(1):63−69.
[24] 张鹏飞,吐哈石油勘探开发会战指挥部,中国矿业大学北京研究生部. 吐哈盆地含煤沉积与煤成油[M]. 北京:煤炭工业出版社,1997.
[25] 李文,白进. 煤的灰化学[M]. 北京:科学出版社,2013.
[26] DAI Shifeng,REN Deyi,CHOU Chenlin,et al. Geochemistry of trace elements in Chinese coals:A review of abundances,genetic types,impacts on human health,and industrial utilization[J]. International Journal of Coal Geology,2012,94:3−21.
[27] 国家能源局. 高钠煤电站煤粉锅炉设计导则:NB/T 10669–2021[S]. 北京:中国电力出版社,2021.
[28] MANZOORI A R,AGARWAL P K. The fate of organically bound inorganic elements and sodium chloride during fluidized bed combustion of high sodium,high sulphur low rank coals[J]. Fuel,1992,71(5):513−522.
[29] 李赛歌,雍晓艰. 准东高钠煤逐级化学提取试验研究及应用途径建议[J]. 中国煤炭地质,2018,30(8):18−19.
LI Saige,YONG Xiaojian. High sodium coal stepped chemical extraction experimental study and applied approaches in eastern Junggar[J]. Coal Geology of China,2018,30(8):18−19.
[30] BENSON S A,HOLM P L. Comparison of inorganics in three low–rank coals[J]. Industrial & Engineering Chemistry Product Research and Development,1985,24(1):145−149.
[31] 张延波,车可心,何鑫,等. 新疆准东和哈密煤中钠的赋存特征及富集机理差异性研究[J/OL]. 煤炭科学技术,2025:1–17 [2025-01-15]. https://kns.cnki.net/KCMS/detail/detail.aspxfilename=MTKJ2025011400H&dbname=CJFD&dbcode=CJFQ.
ZHANG Yanbo,CHE Kexin,HE Xin,et al. Differences in the occurrence and enrichment causes of sodium in coal from Zhundong and Hami of Xinjiang[J/OL]. Coal Science and Technology,2025:1–17 [2025-01-15]. https://kns.cnki.net/KCMS/detail/detail.aspxfilename=MTKJ2025011400H&dbname=CJFD&dbcode=CJFQ.
[32] DAI Shifeng,LI Dan,CHOU Chenlin,et al. Mineralogy and geochemistry of boehmite–rich coals:New insights from the Haerwusu surface mine,Jungar coalfield,Inner Mongolia,China[J]. International Journal of Coal Geology,2008,74(3/4):185−202.
[33] E•斯塔赫. 斯塔赫煤岩学教程[M]. 杨起,译. 北京:煤炭工业出版社,1990.
[34] 徐小涛,邵龙义. 利用泥质岩化学蚀变指数分析物源区风化程度时的限制因素[J]. 古地理学报,2018,20(3):515−522.
XU Xiaotao,SHAO Longyi. Limiting factors in utilization of chemical index of alteration of mudstones to quantify the degree of weathering in provenance[J]. Journal of Palaeogeography (Chinese Edition),2018,20(3):515−522.
[35] WARD C R. Analysis,origin and significance of mineral matter in coal:An updated review[J]. International Journal of Coal Geology,2016,165:1−27.
[36] SHAO Longyi,JONES T,GAYER R,et al. Petrology and geochemistry of the high–sulphur coals from the Upper Permian carbonate coal measures in the Heshan coalfield,Southern China[J]. International Journal of Coal Geology,2003,55(1):1−26.
[37] 代世峰,任德贻,唐跃刚. 煤中常量元素的赋存特征与研究意义[J]. 煤田地质与勘探,2005,33(2):1−5.
DAI Shifeng,REN Deyi,TANG Yuegang. Modes of occurrence of major elements in coal and their study significance[J]. Coal Geology & Exploration,2005,33(2):1−5.
[38] WANG Chang’an,ZHAO Lei,HAN Tao,et al. Release and transformation behaviors of sodium,calcium,and iron during oxy–fuel combustion of Zhundong coals[J]. Energy & Fuels,2018,32(2):1242−1254.
[39] 张军,汉春利,刘坤磊,等. 煤中碱金属及其在燃烧中的行为[J]. 热能动力工程,1999,14(2):83−85.
ZHANG Jun,HAN Chunli,LIU Kunlei,et al. Various forms of alkali metal in coal and its behavior during coal combustion[J]. Journal of Engineering for Thermal Energy and Power,1999,14(2):83−85.
[40] 汉春利,张军,刘坤磊,等. 煤中钠存在形式的研究[J]. 燃料化学学报,1999,27(6):575−578.
HAN Chunli,ZHANG Jun,LIU Kunlei,et al. Modes of occurrence of sodium in coals[J]. Journal of Fuel Chemistry and Technology,1999,27(6):575−578.
[41] 熊文勃. 新疆哈密大南湖一带岩浆岩地球化学特征及构造环境分析[D]. 兰州:兰州大学,2018.
XIONG Wenbo. Geochemical characteristics and tectonic environment of magmatic rocks in the area of Hami Dananhu of Xinjiang[D]. Lanzhou:Lanzhou University,2018.
[42] 吴丁丁,姚震,贾凤超,等. 新疆哈密盆地地下水水化学特征及成因分析[J]. 干旱区资源与环境,2020,34(7):133−141.
WU Dingding,YAO Zhen,JIA Fengchao,et al. Hydro–geochemical characteristics and genetic analysis of groundwater in Hami Basin,Xinjiang[J]. Journal of Arid Land Resources and Environment,2020,34(7):133−141.
[43] 廖世斌. 新疆鄯善县沙尔湖地区盐类矿床成矿地质特征及找矿标志[J]. 现代矿业,2017,33(1):72−76.
LIAO Shibin. Metallogenic geological characteristics and prospecting indicators of saline deposit in Shaerhu area in Shanshan County,Xinjiang[J]. Modern Mining,2017,33(1):72−76.
[44] 葛文胜,刘斌,邱斌,等. 新疆东天山南缘富钾硝酸盐盐湖成矿带地质特征及资源潜力[J]. 矿床地质,2010,29(4):640−648.
GE Wensheng,LIU Bin,QIU Bin,et al. Geological characteristics and resource potential of K–rich nitrate salt lake minerogenetic belt in southern margin of east Tianshan,Xinjiang[J]. Mineral Deposits,2010,29(4):640−648.
[45] 庞博宸,李秋根,陈隽璐,等. 东天山大南湖–头苏泉岛弧带古生代侵入岩浆活动期次及基底性质[J]. 西北地质,2020,53(2):1−26.
PANG Bochen,LI Qiugen,CHEN Junlu,et al. Paleozoic intrusive magmatic activity and basement properties of the Dananhu–Tousuquan island arc in the eastern Tianshan Mountains[J]. Northwestern Geology,2020,53(2):1−26.
[46] 孙厚云,毛启贵,卫晓锋,等. 哈密盆地地下水系统水化学特征及形成演化[J]. 中国地质,2018,45(6):1128−1141.
SUN Houyun,MAO Qigui,WEI Xiaofeng,et al. Hydrogeochemical characteristics and formation evolutionary mechanism of the groundwater system in the Hami Basin[J]. Geology in China,2018,45(6):1128−1141.
[47] SUN Jimin,LIU Weiguo,LIU Zhonghui,et al. Extreme aridification since the beginning of the Pliocene in the Tarim Basin,Western China[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2017,485:189−200.
[48] 张德海. 东天山哈密盆地白垩纪以来构造–气候–地表过程研究[D]. 武汉:中国地质大学,2022.
ZHANG Dehai. Study of tectonic,climatic,and surface processes in the Hami Basin of the eastern Tianshan since the Cretaceous[D]. Wuhan:China University of Geosciences,2022.
[49] 周志芳,王锦国. 地下水动力学[M]. 北京:中国水利水电出版社,2021.
[50] 汉春利,张军,颜峥,等. 钠在煤燃烧初期释放特性的多元相关分析[J]. 燃烧科学与技术,2002,8(5):395−398.
HAN Chunli,ZHANG Jun,YAN Zheng,et al. Multivariate statistical analysis on the behaviour of sodium of coal in the initial stage of combustion[J]. Journal of Combustion Science and Technology,2002,8(5):395−398.
[51] RAASK E. Mineral impurities in coal combustion:Behavior,problems,and remedial measures[M]. Washington:Hemisphere Publishing Corporation,1985.
[52] 苏金水,卓相宇,张丽芳,等. 低浓度铵盐高效精准脱除新疆准东煤中钠[J]. 煤炭学报,2024,49(增刊1):404−412.
SU Jinshui,ZHUO Xiangyu,ZHANG Lifang,et al. Efficient and accurate removal of Na from Xinjiang Zhundong coal with low concentration ammonium salts[J]. Journal of China Coal Society,2024,49(Sup.1):404−412.
[53] SU Jinshui,ZHUO Xiangyu,ZHANG Lifang,et al. Efficient removal behaviors and correlation rules of Na from Zhundong coal with low concentration organic acids[J]. Fuel,2023,350:128803.
[54] 程友良,施宏波,张宁,等. 哈密大南湖矿区高钠煤燃烧应用研究[J]. 洁净煤技术,2017,23(5):32−39.
CHENG Youliang,SHI Hongbo,ZHANG Ning,et al. Practical research of Dananhu high sodium coal combustion in Hami mining[J]. Clean Coal Technology,2017,23(5):32−39.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons