Coal Geology & Exploration
Abstract
Objective and Method High free gas content serves as a key factor controlling the enrichment and high productivity of deep coalbed methane (CBM). However, its direct determination is challenging, making the accurate identification of free gas-rich coal seam intervals a core scientific issue for efficient exploration and recovery of CBM. This study investigated the Daning-Jixian block (also referred to as the Daji Block) within the Ordos Basin. Based on analyses and tests of the gas content, coal macrolithotype, physical properties, and log responses of cores collected from representative wells through pressure-retained coring, this study systematically assessed the vertical heterogeneity of the deep coal seams and identified the supersaturation effect and its influential factors. Results and Conclusions Deep coal seams in the Daji Block exhibit the supersaturation effect, where total gas content exceeds the maximum adsorbed gas content under in-situ geological conditions, establishing the deep coal seams as dominant gas-bearing intervals and gas pay zones. The gas content index (GCI; defined as the ratio of actual gas content to the Langmuir volume measured under in-situ geological conditions) was proposed as an indicator of free gas enrichment. GCI values of < 0.8, 0.8–1.2, and > 1.2 correspond to predominance of adsorbed gas, coexistence of adsorbed and free gas, and free gas enrichment, respectively. The coal seam intervals exhibiting the supersaturation effect (GCI > 0.8) are dominated by bright and semi-bright coals, characterized by favorable reservoir physical properties and high gas content, as well as low natural gamma-ray (GR) values (≤ 50 API), low density (≤ 1.5 g/cm3), and high sonic interval transit time (≥ 350 μs/m) in terms of log parameters. The correlation between the GCI values and log data was determined as follows: (1) GCI values > 1.2 correspond to peak total hydrocarbon values of > 50% and GR values while drilling of < 70 API; (2) 0.8 < GCI values < 1.2 are associated with peak total hydrocarbon values of 20–50% and GR values while drilling of 70–100 API; and (3) GCI values < 0.8 correspond to peak total hydrocarbon values of < 20% and GR values while drilling of > 100 API. Based on the vertical combinations of bright + semi-bright coals, semi-dull + dull coals, and gangue-bearing intervals, deep coal seams in the Daji Block are categorized into three types: thickly layered box type, sandwich type, and micro-sawtooth-shaped thickly layered types, with coal seams of the first type serving as the dominant intervals for the supersaturation effect due to its high gas content. By characterizing the gas-bearing properties of coal seams using the proposed GCI, this study determined the log parameters for identifying the supersaturation effect. This study holds great theoretical and practical significance for investigating the mechanisms behind gas enrichment and predicting sweet spot intervals for deep coal seams.
Keywords
deep coalbed methane (CBM), gas content, free gas, adsorbed gas, high-yield interval, Daning–Jixian block, Ordos Basin
DOI
10.12363/issn.1001-1986.25.07.0517
Recommended Citation
ZHOU Lihong, LI Yong, DING Rong,
et al.
(2025)
"Supersaturation effect and its characterization in gas-rich intervals of deep coal seams,"
Coal Geology & Exploration: Vol. 53:
Iss.
12, Article 14.
DOI: 10.12363/issn.1001-1986.25.07.0517
Available at:
https://cge.researchcommons.org/journal/vol53/iss12/14
Reference
[1] 罗平亚,朱苏阳. 中国建立千亿立方米级煤层气大产业的理论与技术基础[J]. 石油学报,2023,44(11):1755−1763.
LUO Pingya,ZHU Suyang. Theoretical and technical fundamentals of a 100 billion–cubic–meter–scale large industry of coalbed methane in China[J]. Acta Petrolei Sinica,2023,44(11):1755−1763.
[2] 周立宏,熊先钺,李勇,等. 深层煤层(岩)气革命性突破及关键理论与技术[J]. 天然气工业,2025,45(5):17−30.
ZHOU Lihong,XIONG Xianyue,LI Yong,et al. Revolutionary breakthroughs and key theories and technologies in deep coalbed methane development[J]. Natural Gas Industry,2025,45(5):17−30.
[3] 徐长贵,季洪泉,王存武,等. 鄂尔多斯盆地东缘临兴–神府区块深部煤层气富集规律与勘探对策[J]. 煤田地质与勘探,2024,52(8):1−11.
XU Changgui,JI Hongquan,WANG Cunwu,et al. Enrichment patterns and exploration countermeasures of deep coalbed methane in the Linxing–Shenfu Block on the eastern margin of the Ordos Basin[J]. Coal Geology & Exploration,2024,52(8):1−11.
[4] 李国永,姚艳斌,王辉,等. 鄂尔多斯盆地神木–佳县区块深部煤层气地质特征及勘探开发潜力[J]. 煤田地质与勘探,2024,52(2):70−80.
LI Guoyong,YAO Yanbin,WANG Hui,et al. Deep coalbed methane resources in the Shenmu–Jiaxian Block,Ordos Basin,China:Geological characteristics and potential for exploration and exploitation[J]. Coal Geology & Exploration,2024,52(2):70−80.
[5] 伊伟,聂志宏,邢雪杰,等. 鄂尔多斯盆地宜川地区石炭系本溪组深层煤岩气储层特征[J]. 天然气地球科学,2025,36(9):1618–1630.
YI Wei,NIE Zhihong,XING Xuejie,et al. Reservoir characteristics of deep coalbed methane of Carboniferous Benxi Formation in Yichuan area,Ordos Basin[J]. Natural Gas Geoscience,2025,36(9):1618–1630.
[6] 何发岐,雷涛,齐荣,等. 鄂尔多斯盆地大牛地气田深部煤层气勘探突破及其关键技术[J]. 石油与天然气地质,2024,45(6):1567−1576.
HE Faqi,LEI Tao,QI Rong,et al. Breakthroughs and key technology in deep coalbed methane exploration in the Daniudi gas field in the Ordos Basin[J]. Oil & Gas Geology,2024,45(6):1567−1576.
[7] 侯雨庭,周国晓,黄道军,等. 鄂尔多斯盆地纳林河地区煤岩气成藏地质特征[J]. 石油与天然气地质,2024,45(6):1605−1616.
HOU Yuting,ZHOU Guoxiao,HUANG Daojun,et al. Geological characteristics of coal–rock gas accumulation in the Nalinhe area,Ordos Basin[J]. Oil & Gas Geology,2024,45(6):1605−1616.
[8] 郭绪杰,支东明,毛新军,等. 准噶尔盆地煤岩气的勘探发现及意义[J]. 中国石油勘探,2021,26(6):38−49.
GUO Xujie,ZHI Dongming,MAO Xinjun,et al. Discovery and significance of coal measure gas in Junggar Basin[J]. China Petroleum Exploration,2021,26(6):38−49.
[9] 陈文圆, 葛燕燕, 孔庆虎, 等. 新疆地区不同产水程度煤层气井排采动态与产能特征[J]. 地质与勘探,2025,61(2):407−419
CHEN Wenyuan, GE Yanan, KONG Qinghu, et al. Drainage performance and productivity characteristics of coalbed methane wells with different water production levels in Xinjiang[J]. Geology and Exploration,2025,61(2):407−419
[10] 文龙,罗冰,孙豪飞,等. 四川盆地上二叠统龙潭组深层煤岩气成藏地质特征及资源潜力[J]. 天然气工业,2024,44(10):22−32.
WEN Long,LUO Bing,SUN Haofei,et al. Geological characteristics and resources potential of deep coal–rock gas reservoir in the Upper Permian Longtan Formation of the Sichuan Basin[J]. Natural Gas Industry,2024,44(10):22−32.
[11] 赵喆,杨威,赵振宇,等. 中国煤成气地质理论研究进展与重点勘探领域[J]. 石油勘探与开发,2024,51(6):1240−1253.
ZHAO Zhe,YANG Wei,ZHAO Zhenyu,et al. Research progresses in geological theory and key exploration areas of coal–formed gas in China[J]. Petroleum Exploration and Development,2024,51(6):1240−1253.
[12] 周立宏,陈长伟,韩国猛,等. 复杂断陷盆地深层煤岩气地质特征、有利成藏因素及发育模式:以渤海湾盆地大港探区为例[J]. 石油与天然气地质,2024,45(6):1665−1677.
ZHOU Lihong,CHEN Changwei,HAN Guomeng,et al. Geological characteristics,favorable accumulation factors,and developmental models of deep coal–rock gas in complex fault–bounded basins:A case study of the Dagang exploration area in the Bohai Bay Basin[J]. Oil & Gas Geology,2024,45(6):1665−1677.
[13] 牛小兵,喻健,徐旺林,等. 鄂尔多斯盆地上古生界煤岩气成藏地质条件及勘探方向[J]. 天然气工业,2024,44(10):33−50.
NIU Xiaobing,YU Jian,XU Wanglin,et al. Reservoir–forming geological conditions and exploration directions of Upper Paleozoic coal–rock gas in the Ordos Basin[J]. Natural Gas Industry,2024,44(10):33−50.
[14] 李勇,徐立富,刘宇,等. 深部煤层气水赋存机制、环境及动态演化[J]. 煤田地质与勘探,2024,52(2):40−51.
LI Yong,XU Lifu,LIU Yu,et al. Occurrence mechanism,environment and dynamic evolution of gas and water in deep coal seams[J]. Coal Geology & Exploration,2024,52(2):40−51.
[15] 康永尚,邓泽,皇甫玉慧,等. 中煤阶煤层气高饱和–超饱和带的成藏模式和勘探方向[J]. 石油学报,2020,41(12):1555−1566.
KANG Yongshang,DENG Ze,HUANGFU Yuhui,et al. Accumulation model and exploration direction of high–to over–saturation zone of the medium–rank coalbed methane[J]. Acta Petrolei Sinica,2020,41(12):1555−1566.
[16] 李勇,徐立富,张守仁,等. 深煤层含气系统差异及开发对策[J]. 煤炭学报,2023,48(2):900−917.
LI Yong,XU Lifu,ZHANG Shouren,et al. Gas bearing system difference in deep coal seams and corresponded development strategy[J]. Journal of China Coal Society,2023,48(2):900−917.
[17] 周立宏,熊先钺,丁蓉,等. 煤岩气内涵、富集机理及实践意义[J]. 天然气工业,2025,45(3):1−15.
ZHOU Lihong,XIONG Xianyue,DING Rong,et al. Connotation,enrichment mechanism and practical significance of coal–rock gas[J]. Natural Gas Industry,2025,45(3):1−15.
[18] 牛小兵,范立勇,闫小雄,等. 鄂尔多斯盆地煤岩气富集条件及资源潜力[J]. 石油勘探与开发,2024,51(5):972−985.
NIU Xiaobing,FAN Liyong,YAN Xiaoxiong,et al. Enrichment conditions and resource potential of coal–rock gas in Ordos Basin,NW China[J]. Petroleum Exploration and Development,2024,51(5):972−985.
[19] 侯雨庭,喻健,张春雨,等. 鄂尔多斯盆地石炭系本溪组深部煤层气富集地质特征及勘探前景[J]. 石油学报,2025,46(5):857−874.
HOU Yuting,YU Jian,ZHANG Chunyu,et al. Geological characteristics and exploration prospects of deep coalbed methane enriched in Carboniferous Benxi Formation,Ordos Basin[J]. Acta Petrolei Sinica,2025,46(5):857−874.
[20] 王小东,石军太,郝鹏灵,等. 深部煤层气井合理排采制度优化设计研究:以鄂尔多斯盆地东缘神府区块为例[J]. 地质与勘探,2024,60(4):0850−0862
WANG Xiaodong, SHI Juntai, HAO Pengling, et al. Optimal design of rational drainage schedule for deep coalbed methane wells: Taking the Shenfu Block in eastern Ordos Basin as an example[J]. Geology and Exploration,2024,60(4):0850−0862
[21] 江同文,熊先钺,金亦秋. 深部煤层气地质特征与开发对策[J]. 石油学报,2023,44(11):1918−1930.
JIANG Tongwen,XIONG Xianyue,JIN Yiqiu. Geological characteristics and development countermeasures of deep coalbed methane[J]. Acta Petrolei Sinica,2023,44(11):1918−1930.
[22] 李勇,熊先钺,徐立富,等. 中国煤层气商业开发典型案例及启示[J]. 煤炭科学技术,2025,53(3):31−46.
LI Yong,XIONG Xianyue,XU Lifu,et al. Inspirations of typical commercially developed coalbed methane cases in China[J]. Coal Science and Technology,2025,53(3):31−46.
[23] 王成旺,刘新伟,李曙光,等. 大宁–吉县区块深部煤层气富集主控因素分析及地质工程甜点区评价[J]. 西安石油大学学报(自然科学版),2024,39(4):1−9.
WANG Chengwang,LIU Xinwei,LI Shuguang,et al. Analysis of main controlling factors of deep coalbed methane enrichment and evaluation of geological and engineering sweet areas in Daning–Jixian Block[J]. Journal of Xi’an Shiyou University (Natural Science Edition),2024,39(4):1−9.
[24] 周立宏,闫霞,熊先钺,等. 深部煤层气超临界状态下赋存特征及分配规律[J]. 煤炭科学技术,2025,53(3):73−90.
ZHOU Lihong,YAN Xia,XIONG Xianyue,et al. Characteristics of occurrence and distribution rule of deep coalbed methane in supercritical state[J]. Coal Science and Technology,2025,53(3):73−90.
[25] 李勇,徐凤银,唐书恒,等. 鄂尔多斯盆地煤层(岩)气勘探开发进展及发展方向[J]. 天然气工业,2024,44(10):63−79.
LI Yong,XU Fengyin,TANG Shuheng,et al. Progress and development direction of coalbed methane (coal–rock gas) exploration and development in the Ordos Basin[J]. Natural Gas Industry,2024,44(10):63−79.
[26] 赵喆,徐旺林,赵振宇,等. 鄂尔多斯盆地石炭系本溪组煤岩气地质特征与勘探突破[J]. 石油勘探与开发,2024,51(2):234−247.
ZHAO Zhe,XU Wanglin,ZHAO Zhenyu,et al. Geological characteristics and exploration breakthroughs of coal rock gas in Carboniferous Benxi Formation,Ordos Basin,NW China[J]. Petroleum Exploration and Development,2024,51(2):234−247.
[27] 孙粉锦,周国晓,田文广,等. 煤层气系统的定义、内涵、形成及应用:以鄂尔多斯盆地石炭系–二叠系煤层为例[J]. 天然气工业,2024,44(7):42−53.
SUN Fenjin,ZHOU Guoxiao,TIAN Wenguang,et al. Definition,connotation,formation and application of coalbed methane system:A case study on the Carboniferous–Permian coal seams in the Ordos Basin[J]. Natural Gas Industry,2024,44(7):42−53.
[28] 周立宏,李勇,丁蓉,等. 煤层(岩)气“同生异构”控藏特征及开发实践:以鄂尔多斯盆地大吉区块石炭系本溪组8号煤为例[J]. 石油勘探与开发,2025,52(4):772−781.
ZHOU Lihong,LI Yong,DING Rong,et al. Differential accumulation characteristics and production of coalbed methane/coal–rock gas:A case study of the No.8 Coal Seam of the Carboniferous Benxi Formation in the Daji Block,Ordos Basin,NW China[J]. Petroleum Exploration and Development,2025,52(4):772−781.
[29] 闫霞,徐凤银,聂志宏,等. 深部微构造特征及其对煤层气高产“甜点区”的控制:以鄂尔多斯盆地东缘大吉地区为例[J]. 煤炭学报,2021,46(8):2426−2439.
YAN Xia,XU Fengyin,NIE Zhihong,et al. Microstructure characteristics of Daji area in east Ordos Basin and its control over the high yield dessert of CBM[J]. Journal of China Coal Society,2021,46(8):2426−2439.
[30] 李爱芬. 油层物理学(第3版)[M]. 东营:中国石油大学出版社,2011.
[31] 康永尚,王金,姜杉钰,等. 量化指标在煤层气开发潜力定量评价中的应用[J]. 石油学报,2017,38(6):677−686.
KANG Yongshang,WANG Jin,JIANG Shanyu,et al. Application of quantitative indexes in quantitative evaluation of coalbed methane development potential[J]. Acta Petrolei Sinica,2017,38(6):677−686.
[32] 赵庆波,张公明. 煤层气评价重要参数及选区原则[J]. 石油勘探与开发,1999,26(2):23−26.
ZHAO Qingbo,ZHANG Gongming. Important parameters in the evaluation of coal–bed gas and principles for screening exploration target[J]. Petroleum Exploration and Development,1999,26(2):23−26.
[33] 李勇,高爽,吴鹏,等. 深部煤层气游离气含量预测模型评价与校正:以鄂尔多斯盆地东缘深部煤层为例[J]. 石油学报,2023,44(11):1892−1902.
LI Yong,GAO Shuang,WU Peng,et al. Evaluation and correction of prediction model for free gas content in deep coalbed methane:A case study of deep coal seams in the eastern margin of Ordos Basin[J]. Acta Petrolei Sinica,2023,44(11):1892−1902.
[34] 邓泽,李五忠,孙粉锦,等. 深层煤岩损失气计算新方法[C]//中国煤炭学会煤层气专业委员会,中国石油学会石油地质专业委员会,煤层气产业技术创新战略联盟. 2021年煤层气学术研讨会论文集:中国煤层气勘探开发技术与产业化. 中国石油勘探开发研究院,中国石油集团非常规重点实验室,2021:34–48.
[35] 邓泽,赵群,范立勇,等. 鄂尔多斯盆地本溪组煤岩气含气性主控因素及其实践意义[J]. 煤炭科学技术,2025,53(增刊1):233−251.
DENG Ze,ZHAO Qun,FAN Liyong,et al. Key controlling factors of coal–rock gas of Benxi Formation in Ordos Basin and its practical significance[J]. Coal Science and Technology,2025,53(Sup.1):233−251.
[36] 陈世达,汤达祯,侯伟,等. 煤储层流体特征、聚气主控因素及富气模式:以鄂尔多斯盆地中东部上古生界为例[J]. 石油勘探与开发,2025,52(2):385−394.
CHEN Shida,TANG Dazhen,HOU Wei,et al. Fluid characteristics,gas accumulation controlling factors and gas enrichment modes in coal reservoirs:A case study of the Upper Paleozoic in the central–eastern Ordos Basin,NW China[J]. Petroleum Exploration and Development,2025,52(2):385−394.
[37] 邓泽,王红岩,姜振学,等. 深部煤储层孔裂隙结构对煤层气赋存的影响:以鄂尔多斯盆地东缘大宁–吉县区块为例[J]. 煤炭科学技术,2024,52(8):106−123.
DENG Ze,WANG Hongyan,JIANG Zhenxue,et al. Influence of deep coal pore and fracture structure on occurrence of coalbed methane:A case study of Daning–Jixian Block in eastern margin of Ordos Basin[J]. Coal Science and Technology,2024,52(8):106−123.
[38] LI Yong,TANG Dazhen. Deep coalbed methane development in eastern Ordos Basin,China[J]. Acta Geologica Sinica (English Edition),2015,89(Sup.1):403−404.
[39] 熊先钺,闫霞,徐凤银,等. 深部煤层气多要素耦合控制机理、解吸规律与开发效果剖析[J]. 石油学报,2023,44(11):1812−1826.
XIONG Xianyue,YAN Xia,XU Fengyin,et al. Analysis of multi–factor coupling control mechanism,desorption law and development effect of deep coalbed methane[J]. Acta Petrolei Sinica,2023,44(11):1812−1826.
[40] GOU Qiyang,XU Shang,HAO Fang,et al. Full–scale pores and micro–fractures characterization using FE–SEM,gas adsorption,nano–CT and micro–CT:A case study of the Silurian Longmaxi Formation shale in the Fuling area,Sichuan Basin,China[J]. Fuel,2019,253:167−179.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons