•  
  •  
 

Coal Geology & Exploration

Abstract

Objective Carbon capture, utilization, and storage (CCUS) is supposed to become an essential technology for the consumption of fossil fuels under the background of achieving carbon neutrality. Delving into the spatial distribution of regional CO2 stationary sources and the source-sink matching characteristics will contribute to more rational decision-making in CCUS deployment and promote the development of carbon sequestration technology. Methods This study investigated the spatial distribution of CO2 stationary sources in Zhejiang Province and, using the carbon emission factor method, assessed their CO2 emissions based on their scales. Furthermore, it analyzed the geological features of both onshore and offshore basins in the province and evaluated the conditions and potential for CO2 sequestration of possible target basins. The cluster division of CO2 stationary sources in the province was conducted through cluster analysis. Using the minimal transportation cost as the objective function, the optimal source-sink matching was explored under the assumption that coastal transfer hubs were available for onshore-offshore CO2 pipeline transportation. [Results and Conclusions] There existed 198 CO2 stationary sources in Zhejiang Province in 2024, including thermal power plants, steel mills, cement plants, and synthetic ammonia plants, with total annual CO2 emissions of approximately 297 39.73 × 104 t. Among these, thermal power plants released 82.96% of CO2 emissions. These sources included 21 CO2 stationary sources with annual emissions exceeding 500 × 104 t, accounting for 63.87% of the total annual emissions, and 157 sources with annual emissions exceeding 10 × 104 t, totaling about 29512.52 × 104 t per year. In Zhejiang Province, onshore basins are characterized by limited areas and poor conditions for CO2 sequestration. In contrast, the offshore East China Sea Shelf Basin exhibits favorable sequestration conditions, a high degree of hydrocarbon exploration, and considerable potential for CO2 sequestration, capable of storing the CO2 emissions of 196 years in the province. In this offshore basin, the Yangtze, Qiantang, and Oujiang sags, located near coasts, can collectively offer a sequestration capacity of the CO2 emissions of 54 years in the province. The matched CO2 sources and sinks show a parallel distribution overall. Under varying distance thresholds for the cluster division of CO2 sources, shifts in cluster centers or the proximity of CO2 sources to multiple carbon sinks might cause a CO2 source to match different carbon sinks. The results of this study will provide a theoretical basis for scientific decision-making and rational planning of CCUS in Zhejiang Province in the future, thereby contributing to the low-carbon utilization of fossil fuels and the achievement of carbon neutrality in the province.

Keywords

CO2 stationary source, sequestration potential, source-sink matching, Zhejiang Province, East China Sea Shelf Basin

DOI

10.12363/issn.1001-1986.25.06.0423

Reference

[1] Intergovernmental Panel on Climate Change (IPCC). Climate change 2022–mitigation of climate change:Working Group III contribution to the sixth assessment report of the intergovernmental panel on climate change[M]. Cambridge:Cambridge University Press,2023.

[2] TOLLEFSON J. Clock ticking on climate action[J]. Nature,2018,562(7726):172−173.

[3] RITCHIE H,ROSADO P,ROSER M. CO₂ emissions by fuel[EB/OL]. (2020-06) [2025-11-25]. https://archive. ourworldindata. org/20251125–173858/emissions–by–fuel. html.

[4] 朱前林,刘含笑,陈东宝,等. 碳核查与交易需求背景下固定源CO2排放连续监测技术分析[J]. 环境工程学报,2024,18(10):2764−2773.

ZHU Qianlin,LIU Hanxiao,CHEN Dongbao,et al. Technical analysis of continuous monitoring of CO2 emissions from stationary sources within the framework of carbon verification and trading requirements[J]. Chinese Journal of Environmental Engineering,2024,18(10):2764−2773.

[5] IPCC. Global warming of 1. 5 ℃[R]. An IPCC special report on the impacts of global warming of 1. 5 ℃ above pre–industrial levels and related global greenhouse gas emission pathways,in the context of strengthening the global response to the threat of climate change,sustainable development,and efforts to eradicate poverty,2018.

[6] IPCC. Special report on carbon dioxide capture and storage[R]. Cambridge:Cambridge University Press,2006.

[7] IEA. CCUS in clean energy transitions[R]. Paris:IEA,2020.

[8] 张贤,杨晓亮,鲁玺,等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2023)[R]. 中国21世纪议程管理中心,全球碳捕集与封存研究院,清华大学,2023.

[9] JIANG Kai,ASHWORTH P,ZHANG Shiyi,et al. China’s carbon capture,utilization and storage (CCUS) policy:A critical review[J]. Renewable and Sustainable Energy Reviews,2020,119:109601.

[10] MIDDLETON R S,YAW S P,HOOVER B A,et al. SimCCS:An open–source tool for optimizing CO2 capture,transport,and storage infrastructure[J]. Environmental Modelling & Software,2020,124:104560.

[11] SUN Liang,CHEN Wenying. Development and application of a multi–stage CCUS source–sink matching model[J]. Applied Energy,2017,185:1424−1432.

[12] ZHU Qianlin,WANG Chuang,FAN Zhihan,et al. Optimal matching between CO2 sources in Jiangsu Province and sinks in Subei–southern south Yellow Sea Basin,China[J]. Greenhouse Gases:Science and Technology,2019,9(1):95−105.

[13] 顾张锋,徐丽华,马淇蔚,等. 浙江省都市区碳排放时空演变及其影响因素[J]. 自然资源学报,2022,37(6):1524−1539.

GU Zhangfeng,XU Lihua,MA Qiwei,et al. Spatio–temporal evolution of carbon emissions in metropolitan areas and its influencing factors:A case study of Zhejiang Province[J]. Journal of Natural Resources,2022,37(6):1524−1539.

[14] 沈杨,汪聪聪,高超,等. 基于城市化的浙江省湾区经济带碳排放时空分布特征及影响因素分析[J]. 自然资源学报,2020,35(2):329−342.

SHEN Yang,WANG Congcong,GAO Chao,et al. Spatio–temporal distribution and its influencing factors of carbon emissions in economic zone of Zhejiang Bay Area based on urbanization[J]. Journal of Natural Resources,2020,35(2):329−342.

[15] 刘颖,王远,朱琳. 长三角地区建筑业碳排放变化的时空特征及影响因素分析[J]. 中国环境科学,2023,43(12):6677−6688.

LIU Ying,WANG Yuan,ZHU Lin. Analyzing carbon emissions in the Yangtze River Delta’s construction industry:Spatiotemporal characteristics and influencing factors[J]. China Environmental Science,2023,43(12):6677−6688.

[16] 祁慧博,沈欣懿,龙飞,等. 浙江省县域碳排放的时空格局与影响因素研究[J]. 长江流域资源与环境,2023,32(4):821−831.

QI Huibo,SHEN Xinyi,LONG Fei,et al. Study on spatial–temporal pattern and influencing factors of county carbon emissions in Zhejiang Province[J]. Resources and Environment in the Yangtze Basin,2023,32(4):821−831.

[17] 陈建文,孙晶,杨长清,等. 东海陆架盆地新生界咸水层二氧化碳封存地质条件及封存前景[J]. 海洋地质前沿,2023,39(10):14−21.

CHEN Jianwen,SUN Jing,YANG Changqing,et al. Geological conditions and prospects of carbon dioxide storage in the Cenozoic saline water layers of the East China Sea Shelf Basin[J]. Marine Geology Frontiers,2023,39(10):14−21.

[18] 可行,陈建文,龚建明,等. 东海陆架盆地CO2地质封存适宜性评价[J]. 海洋地质前沿,2023,39(7):1−12.

KE Xing,CHEN Jianwen,GONG Jianming,et al. Suitability evaluation of CO2 sequestration in the East China Sea Shelf Basin[J]. Marine Geology Frontiers,2023,39(7):1−12.

[19] 赵勇,李久娣,杨鹏程,等. 东海陆架盆地咸水层CO2封存地质条件适宜性评价[J]. 海洋地质与第四纪地质,2023,43(4):129−139.

ZHAO Yong,LI Jiudi,YANG Pengcheng,et al. Evaluation on of geological suitability for CO2 storage in salty aquifers in the East China Sea Shelf Basin[J]. Marine Geology & Quaternary Geology,2023,43(4):129−139.

[20] 王俊博,李鑫,田继军,等. 煤炭开发利用产业碳足迹计算方法及减排措施综述[J]. 煤炭学报,2023,48(增刊1):263−274.

WANG Junbo,LI Xin,TIAN Jijun,et al. Summary of carbon footprint calculation methods and emission reduction measures for coal exploitation and utilization[J]. Journal of China Coal Society,2023,48(Sup.1):263−274.

[21] LIU Zhu,SUN Taochun,YU Ying,et al. Near–real–time carbon emission accounting technology toward carbon neutrality[J]. Engineering,2022,14:44−51.

[22] LUO Ang,LI Yongming,CHEN Xi,et al. Review of CO2 sequestration mechanism in saline aquifers[J]. Natural Gas Industry B,2022,9(4):383−393.

[23] 李琦,刘桂臻,李小春,等. 多维度视角下CO2捕集利用与封存技术的代际演变与预设[J]. 工程科学与技术,2022,54(1):157−166.

LI Qi,LIU Guizhen,LI Xiaochun,et al. Intergenerational evolution and presupposition of CCUS technology from a multidimensional perspective[J]. Advanced Engineering Sciences,2022,54(1):157−166.

[24] 李小春,方志明,魏宁,等. 我国CO2捕集与封存的技术路线探讨[J]. 岩土力学,2009,30(9):2674−2678.

LI Xiaochun,FANG Zhiming,WEI Ning,et al. Discussion on technical roadmap of CO2 capture and storage in China[J]. Rock and Soil Mechanics,2009,30(9):2674−2678.

[25] 朱前林,陈东宝,龚懿杰,等. 江苏省及近海区域CO2地质封存储层条件分析[J]. 高校地质学报,2023,29(1):25−36.

ZHU Qianlin,CHEN Dongbao,GONG Yijie,et al. Analysis of CO2 geological storage condition in Jiangsu Province and offshore area[J]. Geological Journal of China Universities,2023,29(1):25−36.

[26] WILBERFORCE T,OLABI A G,SAYED E T,et al. Progress in carbon capture technologies[J]. Science of the Total Environment,2021,761:143203.

[27] 祁生文,郑博文,路伟,等. 二氧化碳地质封存选址指标体系及适宜性评价研究[J]. 第四纪研究,2023,43(2):523−550.

QI Shengwen,ZHENG Bowen,LU Wei,et al. Investigation of indexes system and suitability evaluation for carbon dioxide geological storage site[J]. Quaternary Sciences,2023,43(2):523−550.

[28] 王行信,袁鸿燕. 宁波盆地方岩组砂岩成岩作用[J]. 石油勘探与开发,1989,16(4):19−26.

WANG Xingxin,YUAN Hongyan. Disgenesis of the sandstones in Fangyan Group in Ningbo Basin[J]. Petroleum Exploration and Development,1989,16(4):19−26.

[29] 朱国华,银乐富,葛敏海. 宁波盆地朝川组火碎屑岩储层评价[J]. 浙江地质,1992,8(2):57−64.

ZHU Guohua,YIN Lefu,GE Minhai. Reserve evaluation of volcanic clasolites of Chaochuan Formation,Ningbo Basin[J]. Geology of Zhejiang,1992,8(2):57−64.

[30] 徐冬,刘建国,王立敏,等. CCUS中CO2运输环节的技术及经济性分析[J]. 国际石油经济,2021,29(6):8−16.

XU Dong,LIU Jianguo,WANG Limin,et al. Technical and economic analysis on CO2 transportation link in CCUS[J]. International Petroleum Economics,2021,29(6):8−16.

[31] 魏宁,王倩,李小春,等. CO2海洋管道运输的技术经济分析[J]. 油气储运,2015,34(11):1141−1146.

WEI Ning,WANG Qian,LI Xiaochun,et al. Technical and economic assessments on CO2 transmission through subsea pipelines[J]. Oil & Gas Storage and Transportation,2015,34(11):1141−1146.

[32] 李春峰,赵学婷,段威,等. 中国海域盆地CO2地质封存选址方案与构造力学分析[J]. 力学学报,2023,55(3):719−731.

LI Chunfeng,ZHAO Xueting,DUAN Wei,et al. Strategic and geodynamic analyses of geo–sequestration of CO2 in China offshore sedimentary basins[J]. Chinese Journal of Theoretical and Applied Mechanics,2023,55(3):719−731.

[33] MCCOLLUM D L,OGDEN J M. Techno–economic models for carbon dioxide compression,transport,and storage & correlations for estimating carbon dioxide density and viscosity[M]. Davis:University of California,2006.

[34] 刘世奇,莫航,桑树勋,等. 宁夏回族自治区碳捕集、利用与封存源汇匹配与集群部署[J]. 煤炭学报,2024,49(3):1583−1596.

LIU Shiqi,MO Hang,SANG Shuxun,et al. Source–sink matching and cluster deployment of carbon capture,utilization,and storage in Ningxia Hui Autonomous Region[J]. Journal of China Coal Society,2024,49(3):1583−1596.

[35] 中国钢铁工业协会. 2024年钢铁行业经济运行报告[R]. 北京:中国钢铁工业协会,2025.

[36] 中国水泥协会. 2023年中国水泥经济运行及2024年展望[R]. 北京:中国水泥协会,2024.

[37] 国家能源局,中国电力企业联合会. 2021年全国电力可靠性年度报告[R]. 国家能源局,中国电力企业联合会,2022.

[38] 朱前林,龚懿杰,陈浮,等. 江苏省固定CO2排放源空间分布及排放量特征分析[J]. 能源与环保,2022,44(10):133−138.

ZHU Qianlin,GONG Yijie,CHEN Fu,et al. Analysis on characteristics of the geographical distribution and the emissions of stationary CO2 sources in Jiangsu Province[J]. China Energy and Environmental Protection,2022,44(10):133−138.

[39] 中国电力企业联合会. 中国电力统计年鉴(2022)[M]. 北京:中国统计出版社,2022.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.