Coal Geology & Exploration
Abstract
Objective and Method CO2 sequestration in basalts offers advantages such as permanent carbonation and elevated safety. Based on literature review and case studies, this study compared the CO2 sequestration performance of basalts, clastic rocks, and carbonate rocks. Accordingly, the pros and cons of technologies for CO2 sequestration in these rocks were determined, and the dominant mechanisms underlying the CO2 sequestration were identified. By revealing the characteristics of CO2 sequestration in the three rock types based on representative projects and tests, this study conducted a comparative analysis of the mechanisms, conditions, technologies, potential, and siting for CO2 sequestration in the three rock types. Results and Conclusions CO2 sequestration in basalts was dominated by mineral trapping. Specifically, the abundant Fe2+, Ca2+, and Mg2+ ions in basalts can rapidly react with CO2 to form stable carbonate minerals, offering the advantages of long-term and stable CO2 sequestration. A representative project is CarbFix of Iceland, which injects acidic solutions formed by CO2 dissolution in water into basalt strata to simulate and accelerate the natural weathering process of basalts. Regarding siting for CO2 sequestration in basalts, it is necessary to avoid tectonically unstable areas such as seismic zones and active faults. Given that basalts are extensively distributed globally and that their tight structures and structural trapping can reduce the CO2 leakage risk, CO2 sequestration in basalts exhibits significantly elevated safety and permanence compared to traditional methods. Nevertheless, this technology faces three key challenges: huge water consumption, geological complexity, and low sequestration efficiency. Regarding water consumption, 25 t of freshwater is required when injecting 1 t of CO2 using a traditional method, exacerbating resource conflicts in regions with water scarcity and incurring high costs of water transfer. Although seawater acts as a potential alternative, it is prone to cause pipeline corrosion and formation clogging due to its high salinity, with resulting environmental risks remaining poorly understood. In terms of geological complexity, the uneven distribution of fractures and pores in basalts leads to significant differences in CO2 diffusion and mineral trapping efficiency while also potentially increasing the CO2 leakage risk. However, existing geological modeling techniques are insufficient for the accurate prediction of actual conditions. Regarding sequestration efficiency, carbonate minerals generated from mineral trapping in basalts will cover the surfaces of active minerals, reducing reaction rates and creating a passivation effect. This issue can be mitigated by injecting nanocatalysts or using ultrasound-assisted techniques.
Keywords
geologic CO2 sequestration, basalt, permanent carbonation, mineral trapping, carbon neutrality
DOI
10.12363/issn.1001-1986.25.06.0421
Recommended Citation
HU Chenlin, SANG Shuxun, LI Xin,
et al.
(2025)
"Uniqueness and prospects of CO2 sequestration in basalts,"
Coal Geology & Exploration: Vol. 53:
Iss.
12, Article 10.
DOI: 10.12363/issn.1001-1986.25.06.0421
Available at:
https://cge.researchcommons.org/journal/vol53/iss12/10
Reference
[1] ZHANG Zhien,WANG Tao,BLUNT M J,et al. Advances in carbon capture,utilization and storage[J]. Applied Energy,2020,278:115627.
[2] MCQUEEN N,GOMES K V,MCCORMICK C,et al. A review of direct air capture (DAC):Scaling up commercial technologies and innovating for the future[J]. Progress in Energy,2021,3(3):032001.
[3] 高志豪,夏菖佑,廖松林,等. 玄武岩CO2矿化封存潜力评估方法研究现状及展望[J]. 高校地质学报,2023,29(1):66−75
GAO Zhihao,XIA Changyou,LIAO Songlin,et al. Progress of methods for assessing CO2 mineralization storage potential in basalt[J]. Geological Journal of China Universities,2023,29(1):66−75
[4] 祁建磊,周丹,喻文,等. “双碳”背景下超临界流体技术应用与发展[J]. 化工进展,2025,44(10):5515−5531
QI Jianlei,ZHOU Dan,YU Wen,et al. Application and development of supercritical fluid technology under the “dual carbon” background[J]. Chemical Industry and Engineering Progress,2025,44(10):5515−5531
[5] 李全中,倪小明,王延斌,等. 超临界状态下煤岩吸附/解吸二氧化碳的实验[J]. 煤田地质与勘探,2014,42(3):36−39
LI Quanzhong,NI Xiaoming,WANG Yanbin,et al. The experimental study on the adsorption/desorption of carbon dioxide in the coal under supercritical condition[J]. Coal Geology & Exploration,2014,42(3):36−39
[6] 邱宁,付启承,刘彬,等. 玄武岩CO2矿化封存实验备选场地勘查和潜力评价:雷州半岛田洋火山断陷盆地实例[J]. 环境工程学报,2025,19(2):500−510
QIU Ning,FU Qicheng,LIU Bin,et al. Investigations and potential assessment of basalt CO2 mineral sequestration experiment field:A case study of Tianyang Volcanic Fault Basin in Leizhou Peninsula,China[J]. Chinese Journal of Environmental Engineering,2025,19(2):500−510
[7] SAYEGH S G,KRAUSE F F,GIRARD M,et al. Rock/fluid interactions of carbonated brines in a sandstone reservoir:Pembina Cardium,Alberta,Canada[J]. SPE Formation Evaluation,1990,5(4):399−405.
[8] JOHNSON G,MAYER B,SHEVALIER M,et al. Tracing the movement of CO2 injected into a mature oilfield using carbon isotope abundance ratios:The example of the Pembina Cardium CO2 Monitoring project[J]. International Journal of Greenhouse Gas Control,2011,5(4):933−941.
[9] KRAUSE F F,COLLINS H N,NELSON D A,et al. Multiscale anatomy of a reservoir:Geological characterization of Pembina–Cardium pool,west–central Alberta,Canada[J]. AAPG Bulletin,1987,71(10):1233−1260.
[10] ZHU Qianlin,ZUO Dianjun,ZHANG Shaoliang,et al. Simulation of geomechanical responses of reservoirs induced by CO2 multilayer injection in the Shenhua CCS project,China[J]. International Journal of Greenhouse Gas Control,2015,42:405−414.
[11] 赵海英,陈沅忠,李彦鹏,等. CO2地质封存时移垂直地震监测技术[J]. 岩土力学,2018,39(8):3095−3102
ZHAO Haiying,CHEN Yuanzhong,LI Yanpeng,et al. CO2 monitoring with time–lapse vertical seismic profile[J]. Rock and Soil Mechanics,2018,39(8):3095−3102
[12] 汤少兵,李宗要,谢承斌,等. 防CO2腐蚀水泥浆在神华CCS示范项目中的应用[J]. 钻井液与完井液,2011,28(增刊1):17−19
TANG Shaobing,LI Zongyao,XIE Chengbin,et al. Application of CO2 corrosion resistance cement slurry in Shenhua CCS demonstration project[J]. Drilling Fluid & Completion Fluid,2011,28(Sup.1):17−19
[13] LU Song,HU Chenlin,WANG Xiangyan,et al. Carbon dioxide storage in magmatic rocks:Review and perspectives[J]. Renewable and Sustainable Energy Reviews,2024,202:114728.
[14] TORP T A,GALE J. Demonstrating storage of CO2 in geological reservoirs:The Sleipner and SACS projects[J]. Energy,2004,29(9/10):1361−1369.
[15] ARTS R,EIKEN O,CHADWICK A,et al. Monitoring of CO2 injected at Sleipner using time–lapse seismic data[J]. Energy,2004,29(9/10):1383−1392.
[16] ARTS R J,CHADWICK A,EIKEN O,et al. Ten years’ experience of monitoring CO2 injection in the Utsira Sand at Sleipner,offshore Norway[J]. First Break,2008,26(1):65−72.
[17] 王敬霞,雷磊,于青春. 我国碳酸盐岩储层CO2地质储存潜力与适宜性[J]. 中国岩溶,2015,34(2):101−108
WANG Jingxia,LEI Lei,YU Qingchun. Evaluation of capacity and suitability of CO2 geological storage in carbonate formations in basins of China mainland[J]. Carsologica Sinica,2015,34(2):101−108
[18] 何新兴,甘笑非,杨长城,等. 四川盆地卧龙河气田CO2–EGR先导试验新进展[J]. 天然气工业,2025,45(9):19−32
HE Xinxing,GAN Xiaofei,YANG Changcheng,et al. Latest progress of CO2–EGR pilot test in the Wolonghe gas field of the Sichuan Basin[J]. Natural Gas Industry,2025,45(9):19−32
[19] 罗志立,韩建辉,罗超,等. 四川盆地工业性油气层的发现、成藏特征及远景[J]. 新疆石油地质,2013,34(5):504−514
LUO Zhili,HAN Jianhui,LUO Chao,et al. The discovery,characteristics and prospects of commercial oil and gas layers/reservoirs in Sichuan Basin[J]. Xinjiang Petroleum Geology,2013,34(5):504−514
[20] GUNNARSSON I,ARADÓTTIR E S,OELKERS E H,et al. The rapid and cost–effective capture and subsurface mineral storage of carbon and sulfur at the CarbFix2 site[J]. International Journal of Greenhouse Gas Control,2018,79:117−126.
[21] ARADOTTIR E S P,SIGFÚSSON B,SNÆBJORNSDOTTIR S O,et al. CarbFix–Climate action by turning CO2 to stone. In:Proceedings of the World Geothermal Congress. Reykjavik,Iceland. 2020.
[22] ALFREDSSON H A,OELKERS E H,HARDARSSON B S,et al. The geology and water chemistry of the Hellisheidi,SW–Iceland carbon storage site[J]. International Journal of Greenhouse Gas Control,2013,12:399−418.
[23] RATOUIS T M P,SNÆBJÖRNSDÓTTIR S Ó,VOIGT M J,et al. CarbFix 2:A transport model of long–term CO2 and H2S injection into basaltic rocks at Hellisheidi,SW–Iceland[J]. International Journal of Greenhouse Gas Control,2022,114:103586.
[24] CLARK D E,GUNNARSSON I,ARADÓTTIR E S,et al. The chemistry and potential reactivity of the CO2–H2S charged injected waters at the basaltic CarbFix2 site,Iceland[J]. Energy Procedia,2018,146:121−128.
[25] SIGFÚSSON B,ARNARSON M Þ,SNÆBJÖRNSDÓTTIR S Ó,et al. Reducing emissions of carbon dioxide and hydrogen sulphide at Hellisheidi power plant in 2014–2017 and the role of CarbFix in achieving the 2040 Iceland climate goals[J]. Energy Procedia,2018,146:135−145.
[26] ALFREDSSON H A,HARDARSON B S,FRANZSON H,et al. CO2 sequestration in basaltic rock at the Hellisheidi site in SW Iceland:Stratigraphy and chemical composition of the rocks at the injection site[J]. Mineralogical Magazine,2008,72(1):1−5.
[27] 王晓,文凯星,石祥超,等. 扩散作用控制下CO2矿化封存实验及模拟研究[J]. 煤炭学报,2024,49(10):4235−4251
WANG Xiao,WEN Kaixing,SHI Xiangchao,et al. Experimental and simulation study on CO2 mineralization under diffusion control[J]. Journal of China Coal Society,2024,49(10):4235−4251
[28] 熊绍柏,金东敏,孙克忠,等. 福建漳州地热田及其邻近地区的地壳深部构造特征[J]. 地球物理学报,1991,34(1):55−63
XIONG Shaobai,JIN Dongmin,SUN Kezhong,et al. Some characteristics of deep structure of the Zhangzhou geothermal field and it’s neighbourhood in the Fujian Province[J]. Chinese Journal of Geophysics,1991,34(1):55−63
[29] 李成龙. 福建漳州汤洋地温异常区的地质与地球化学特征研究[D]. 徐州:中国矿业大学,2019.
LI Chenglong. Geological and geochemical characteristics of Tangyang geothermal anomalies area in Zhangzhou,Fujian Province[D]. Xuzhou:China University of Mining and Technology,2019.
[30] 马永法,周学军,董俊领,等. 黑龙江林甸地区深部咸水层CO2地质储存条件与潜力评估[J]. 水文地质工程地质,2022,49(6):179−189
MA Yongfa,ZHOU Xuejun,DONG Junling,et al. Geological storage conditions and potential assessment of CO2 in deep saline aquifers in Lindian of Heilongjiang Province[J]. Hydrogeology & Engineering Geology,2022,49(6):179−189
[31] 桑树勋,刘世奇,陆诗建,等. 工程化CCUS全流程技术及其进展[J]. 油气藏评价与开发,2022,12(5):711−725
SANG Shuxun,LIU Shiqi,LU Shijian,et al. Engineered full flowsheet technology of CCUS and its research progress[J]. Petroleum Reservoir Evaluation and Development,2022,12(5):711−725
[32] KOPERNA G J Jr,OUDINOT A Y,MCCOLPIN G R,et al. CO2–ECBM/storage activities at the San Juan Basin’s pump canyon test site[C]//SPE Annual Technical Conference and Exhibition. New Orleans:Society of Petroleum Engineers,2009:SPE–124002–MS.
[33] LAKEMAN B,GUNTER W D,BACHU S,et al. Advancing the deployment of CO2 monitoring technologies through the Pembina Cardium CO2 Monitoring Project[J]. Energy Procedia,2009,1(1):2293−2300.
[34] 师庆三. 碳中和约束下新疆塔里木、准噶尔、吐哈盆地CO2理论储存潜力评估[J]. 环境与可持续发展,2021,46(5):99−105
SHI Qingsan. Evaluation of theoretical CO2 storage potential capacity in Tarim,Junggar and Turpan–Hagar Basins of Xinjiang under carbon neutrality constraints[J]. Environment and Sustainable Development,2021,46(5):99−105
[35] 苗顺德,张功成,梁建设,等. 南海北部超深水区荔湾凹陷恩平组三角洲沉积体系及其烃源岩特征[J]. 石油学报,2013,34(增刊2):57−65
MIAO Shunde,ZHANG Gongcheng,LIANG Jianshe,et al. Delta depositional system and source rock characteristics of Enping Formation,Liwan Sag in ultra deep–water area of northern South China Sea[J]. Acta Petrolei Sinica,2013,34(Sup.2):57−65
[36] WHITE D. Monitoring CO2 storage during EOR at the Weyburn–Midale field[J]. The Leading Edge,2009,28(7):838−842.
[37] WHITTAKER S,ROSTRON B,HAWKES C,et al. A decade of CO2 injection into depleting oil fields:Monitoring and research activities of the IEA GHG Weyburn–Midale CO2 Monitoring and Storage Project[J]. Energy Procedia,2011,4:6069−6076.
[38] MATTER J M,STUTE M,SNÆBJÖRNSDOTTIR S Ó,et al. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions[J]. Science,2016,352(6291):1312−1314.
[39] SNÆBJÖRNSDÓTTIR S Ó,OELKERS E H,MESFIN K,et al. The chemistry and saturation states of subsurface fluids during the in situ mineralisation of CO2 and H2S at the CarbFix site in SW–Iceland[J]. International Journal of Greenhouse Gas Control,2017,58:87−102.
[40] 廖松林,马诗佳,夏菖佑,等. 玄武岩CO2矿化封存监测方法和技术体系研究[J]. 水文地质工程地质,2024,51(4):41−52
LIAO Songlin,MA Shijia,XIA Changyou,et al. Research on monitoring methods and technical systems of CO2 mineralization in basalt formation[J]. Hydrogeology & Engineering Geology,2024,51(4):41−52
[41] 霍超,林倚天,李刚,等. 碳中和背景下中国地热资源勘查技术研究进展[J]. 科学技术与工程,2023,23(12):4917−4927
HUO Chao,LIN Yitian,LI Gang,et al. China’s geothermal resource exploration technology research progress under the background of carbon neutrality[J]. Science Technology and Engineering,2023,23(12):4917−4927
[42] MCGRAIL B P,SPANE F A,SULLIVAN E C,et al. The Wallula basalt sequestration pilot project[J]. Energy Procedia,2011,4:5653−5660.
[43] MCGRAIL B P,SPANE F A,AMONETTE J E,et al. Injection and monitoring at the Wallula basalt pilot project[J]. Energy Procedia,2014,63:2939−2948.
[44] MCGRAIL B P,SCHAEF H T,SPANE F A,et al. Wallula basalt pilot demonstration project:Post–injection results and conclusions[J]. Energy Procedia,2017,114:5783−5790.
[45] 赵天沛,于春野,刘方圆,等. 海域咸水层二氧化碳地质封存效率因子研究:以东海西湖凹陷碎屑岩储层为例[J]. 海洋地质前沿,2025,41(3):25−34
ZHAO Tianpei,YU Chunye,LIU Fangyuan,et al. Research on efficiency of CO2 geological storage in saline aquifers in clastic rock reservoirs in Xihu Sag,East China Sea[J]. Marine Geology Frontiers,2025,41(3):25−34
[46] 赵改善. 二氧化碳地质封存地球物理监测:现状、挑战与未来发展[J]. 石油物探,2023,62(2):194−211
ZHAO Gaishan. Geophysical monitoring for geological carbon sequestration:Present status,challenges,and future development[J]. Geophysical Prospecting for Petroleum,2023,62(2):194−211
[47] 贾赛楠,刘海龙,叶先峰. CO2地质封存中碳酸盐岩溶蚀效率影响因素研究[J]. 环境保护前沿,2024,14(2):372−378
JIA Sainan,LIU Hailong,YE Xianfeng. Research of factors affecting carbonate dissolution efficiency in CO2 geologic sequestration[J]. Advances in Environmental Protection,2024,14(2):372−378
[48] 朱梦博,刘浪,王双明,等. 煤矿采空区间隔条带充填CO2矿化封存及其关键技术[J]. 煤田地质与勘探,2025,53(6):143−155
ZHU Mengbo,LIU Lang,WANG Shuangming,et al. Backfill–strip mining and CO2 mineralization sequestration in coal mine goaves:A synergetic method and its key technologies[J]. Coal Geology & Exploration,2025,53(6):143−155
[49] 吴潇,刘润昌. CO2作用下碳酸盐岩物性及孔喉结构变化特征[J]. 油气藏评价与开发,2025,15(4):571−578
WU Xiao,LIU Runchang. Variation characteristics of physical properties and pore–throat structure of carbonate rocks under the influence of CO2[J]. Petroleum Reservoir Evaluation and Development,2025,15(4):571−578
[50] 姜禾禾,王佳敏,万博. 国际岩矿地球化学固碳技术研究进展[J]. 第四纪研究,2023,43(2):494−508
JIANG Hehe,WANG Jiamin,WAN Bo. Review in research progress in carbon sequestration technology from a petrological and geochemical perspective[J]. Quaternary Sciences,2023,43(2):494−508
[51] 刘云乾,廖志伟,丁海,等. 玄武岩矿化封存CO2机理及储层演化特征研究进展[J]. 成都理工大学学报(自然科学版),2024,51(6):975−988
LIU Yunqian,LIAO Zhiwei,DING Hai,et al. Research progress on the CO2 mineralization mechanism and evolution of the physical properties of basalt[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2024,51(6):975−988
[52] RAZA A,GLATZ G,GHOLAMI R,et al. Carbon mineralization and geological storage of CO2 in basalt:Mechanisms and technical challenges[J]. Earth–Science Reviews,2022,229:104036.
[53] 董林森,刘立,曲希玉,等. CO2矿物捕获能力的研究进展[J]. 地球科学进展,2010,25(9):941−949
DONG Linsen,LIU Li,QU Xiyu,et al. Research progress of ability of mineral trapping of CO2[J]. Advances in Earth Science,2010,25(9):941−949
[54] JIANG Jinglian,LI Pengchun,XIA Changyou,et al. Basalt petrology,water chemistry,and their impact on the CO2 mineralization simulation at Leizhou Peninsula site,Southern China[J]. Journal of Marine Science and Application,2024,23(3):583−598.
[55] 姚佩仪. 浙江嵊县组新生代玄武岩CO2地质封存机制及潜力研究[D]. 长春:吉林大学,2025.
YAO Peiyi. Study on CO2 geological storage mechanism and potential of Cenozoic basalt in Shengxian Formation,Zhejiang Province[D]. Changchun:Jilin University,2025.
[56] 李颖,李茂茂,李海涛,等. 纳米SiO2强化CO2地质封存页岩盖层封堵能力机制试验[J]. 中国石油大学学报(自然科学版),2024,48(2):92−98
LI Ying,LI Maomao,LI Haitao,et al. Experiment on nano–SiO2 enhancing sealing capacity of shale caprocks for CO2 geological storage[J]. Journal of China University of Petroleum (Edition of Natural Science),2024,48(2):92−98
[57] 马馨蕊,梁杰,李清,等. 多类型岩石二氧化碳矿化封存机制研究:以玄武岩与砂岩为例[J]. 海洋地质前沿,2025,41(3):56−64
MA Xinrui,LIANG Jie,LI Qing,et al. Study of CO2 mineralization and storage mechanism in basalt and sandstone[J]. Marine Geology Frontiers,2025,41(3):56−64
[58] 马永法,董俊领,王旭,等. 松辽盆地林甸地区二氧化碳咸水层封存适宜性评价[J]. 水文地质工程地质,2025,52(1):238−248
MA Yongfa,DONG Junling,WANG Xu,et al. Evaluation of suitability of CO2 geologic storage in deep saline aquifers in Lindian area of Songliao Basin[J]. Hydrogeology & Engineering Geology,2025,52(1):238−248
[59] 李经纬,彭勃,王泽滕,等. 油气藏CO2封存潜力评估模型与实践进展[J/OL]. 油气藏评价与开发,1-12[2025-12-09]. https://doi.org/10.13809/j.cnki.cn32-1825/te.2025357.
LI Jingwei,PENG Bo,WANG Zeteng,et al. CO2 sequestration potential assessment models and their practical progress in oil and gas reservoirs[J/OL]. Petroleum Reservoir Evaluation and Development,1-12[2025-12-09]. https://doi.org/10.13809/j.cnki.cn32-1825/te.2025357.
[60] 霍晓燕,侯美玲. 煤层气储层地质研究进展[J]. 中国矿业,2024,33(增刊1):10−15
HUO Xiaoyan,HOU Meiling. Progress in geological research on coalbed methane reservoirs[J]. China Mining Magazine,2024,33(Sup.1):10−15
[61] 廖世龙,王春连,杨飞,等. 中国玄武岩矿石和矿床类型、资源分布及工业开发利用现状[J]. 岩石矿物学杂志,2025,44(3):710−726
LIAO Shilong,WANG Chunlian,YANG Fei,et al. Basalt ore and deposit types,resource distribution,industrial development and utilization status in China[J]. Acta Petrologica et Mineralogica,2025,44(3):710−726
[62] 李万伦,徐佳佳,贾凌霄,等. 玄武岩封存CO2技术方法及其进展[J]. 水文地质工程地质,2022,49(3):164−173
LI Wanlun,XU Jiajia,JIA Lingxiao,et al. Research progress on key technologies of CO2 storage in basalts[J]. Hydrogeology & Engineering Geology,2022,49(3):164−173
[63] 熊健,朱梦渊,李文苗,等. 高温作用下不同岩性岩石物理特性的演化规律[J]. 天然气工业,2023,43(12):14−24
XIONG Jian,ZHU Mengyuan,LI Wenmiao,et al. Evolution law of physical properties of rocks with different lithologies under high temperature[J]. Natural Gas Industry,2023,43(12):14−24
[64] 刘操,闫江伟,赵春辉,等. 煤中超临界CO2解吸滞后机理及其对地质封存启示[J]. 煤炭学报,2024,49(7):3154−3166
LIU Cao,YAN Jiangwei,ZHAO Chunhui,et al. Hysteresis mechanism of supercritical CO2 desorption in coal and its implication for carbon geo–sequestration[J]. Journal of China Coal Society,2024,49(7):3154−3166
[65] 盛雪芬,季峻峰,陈骏. 中国超基性岩封存CO2的潜力研究[J]. 第四纪研究,2011,31(3):447−454
SHENG Xuefen,JI Junfeng,CHEN Jun. Assessment of carbon dioxide sequestration potential of ultramafic rocks in China[J]. Quaternary Sciences,2011,31(3):447−454
[66] 汤勇,陈樟池,何佑伟,等. 边水碳酸盐岩气藏注CO2提采及封存潜力预测[J/OL]. 工程科学学报,2025:1–13. https://doi.org/10.13374/j.issn2095–9389.2025.04.15.001.
TANG Yong,CHEN Zhangchi,HE Youwei,et al. Prediction of CO2 enhanced gas recovery and CO2 sequestration performance by CO2 injection in carbonate gas reservoirs with edge–water[J/OL]. Chinese Journal of Engineering,2025:1–13. https://doi.org/10.13374/j.issn2095–9389.2025.04.15.001.
[67] 张敏,叶航,包琦,等. CO2原位矿化选址关键参数及其封存潜力评估研究进展[J]. 化工进展,2024,43(3):1492−1505
ZHANG Min,YE Hang,BAO Qi,et al. Review on key parameters and storage capacity potential assessment for in– situ carbon mineralization site[J]. Chemical Industry and Engineering Progress,2024,43(3):1492−1505
[68] 石登基. 长期封存CO2过程中大同玄武岩溶解–渗流特性演化规律研究[D]. 太原:太原理工大学,2023.
SHI Dengji. Study on the evolution of dissolution–seepage characteristics of Datong basalt during long–term CO2 storage[D]. Taiyuan:Taiyuan University of Technology,2023.
[69] 曹默雷. 碳封存地下空间大数据评价模型及其应用[D]. 北京:中国地质大学(北京),2022.
CAO Molei. The big data evaluation model of underground spaces of the carbon sequestration and its application[D]. Beijing:China University of Geosciences (Beijing),2022.
[70] 孙腾民,刘世奇,汪涛. 中国二氧化碳地质封存潜力评价研究进展[J]. 煤炭科学技术,2021,49(11):10−20
SUN Tengmin,LIU Shiqi,WANG Tao. Research advances on evaluation of CO2 geological storage potential in China[J]. Coal Science and Technology,2021,49(11):10−20
[71] 杨红,赵习森,康宇龙,等. 鄂尔多斯盆地CO2地质封存适宜性与潜力评价[J]. 气候变化研究进展,2019,15(1):95−102
YANG Hong,ZHAO Xisen,KANG Yulong,et al. Evaluation on geological sequestration suitability and potential of CO2 in Ordos Basin[J]. Climate Change Research,2019,15(1):95−102
[72] 祁生文,郑博文,路伟,等. 二氧化碳地质封存选址指标体系及适宜性评价研究[J]. 第四纪研究,2023,43(2):523−550
QI Shengwen,ZHENG Bowen,LU Wei,et al. Investigation of indexes system and suitability evaluation for carbon dioxide geological storage site[J]. Quaternary Sciences,2023,43(2):523−550
[73] 李春峰,赵学婷,段威,等. 中国海域盆地CO2地质封存选址方案与构造力学分析[J]. 力学学报,2023,55(3):719−731
LI Chunfeng,ZHAO Xueting,DUAN Wei,et al. Strategic and geodynamic analyses of geo–sequestration of CO2 in China offshore sedimentary basins[J]. Chinese Journal of Theoretical and Applied Mechanics,2023,55(3):719−731
[74] 孙亮,陈文颖. CO2地质封存选址标准研究[J]. 生态经济,2012,28(7):33−38
SUN Liang,CHEN Wenying. A review of selection criteria for the geological sequestration of CO2[J]. Ecological Economy,2012,28(7):33−38
[75] 周蒂,夏菖佑,李鹏春,等. 玄武岩二氧化碳矿化封存(I):技术特点及适用条件[J]. 环境工程学报,2024,18(10):2708−2718
ZHOU Di,XIA Changyou,LI Pengchun,et al. CO2 mineral storage in basalt (I):Technology and application conditions[J]. Chinese Journal of Environmental Engineering,2024,18(10):2708−2718
[76] 包琦,赵文韬,王春凯,等. 玄武岩CO2矿化反应效率与封存潜力评价[J]. 洁净煤技术,2024,30(10):110−119
BAO Qi,ZHAO Wentao,WANG Chunkai,et al. Enhanced CO2 mineralization reaction efficiency and evaluation of storage potential in basalt geology[J]. Clean Coal Technology,2024,30(10):110−119
[77] SNÆBJÖRNSDÓTTIR S Ó,TÓMASDÓTTIR S,SIGFÚSSON B,et al. The geology and hydrology of the CarbFix2 site,SW–Iceland[J]. Energy Procedia,2018,146:146−157.
[78] 李鹏春,江静练,程锦辉,等. 广东雷州半岛火山岩二氧化碳矿化封存潜力评估[J]. 高校地质学报,2023,29(1):76−84
LI Pengchun,JIANG Jinglian,CHENG Jinhui,et al. Assessment of carbon dioxide mineralization sequestration potential of volcanic rocks in Leizhou Peninsula,Guangdong Province,China[J]. Geological Journal of China Universities,2023,29(1):76−84
[79] 吾尔娜,陈琦,王世伟,等. 济阳坳陷玄武岩油气藏储层的CO2封存潜力研究[J]. 西部探矿工程,2017,29(12):98−100
[80] SIKURAJAPATHI S,RANJITH P G,YANG S Q. Basalt as a carbon sink:Mechanism,alterations and technological advances[J]. Fuel,2025,395:135193.
[81] BASHIR A,ALI M,PATIL S,et al. Comprehensive review of CO2 geological storage:Exploring principles,mechanisms,and prospects[J]. Earth–Science Reviews,2024,249:104672.
[82] 张凯,陈掌星,兰海帆,等. 碳捕集、利用与封存技术的现状及前景[J]. 特种油气藏,2023,32(2):1−9
ZHANG Kai,CHEN Zhangxing,LAN Haifan,et al. Status and prospects of carbon capture,utilization and storage technology[J]. Special Oil & Gas Reservoirs,2023,32(2):1−9
[83] 刘江枫,张奇,吕伟峰,等. 碳捕集利用与封存一体化技术研究进展与产业发展策略[J]. 北京理工大学学报(社会科学版),2023,25(5):40−53
LIU Jiangfeng,ZHANG Qi,LYU Weifeng,et al. Research progress and industry development strategy of integrated carbon capture,utilization and storage technology[J]. Journal of Beijing Institute of Technology (Social Sciences Edition),2023,25(5):40−53
[84] 蒋兰兰,宋永臣,赵越超. 二氧化碳封存和资源化利用研究进展[J]. 能源与环境,2010(3):71−72
[85] 李姜辉,李鹏春,李彦尊,等. 离岸碳捕集利用与封存技术体系研究[J]. 中国工程科学,2023,25(2):173−186
LI Jianghui,LI Pengchun,LI Yanzun,et al. Technology system of offshore carbon capture,utilization,and storage[J]. Strategic Study of CAE,2023,25(2):173−186
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons