•  
  •  
 

Coal Geology & Exploration

Abstract

Objective and Method To determine the boundary detection capability of logging-while-drilling (LWD) electromagnetic azimuthal measurements for high-resistivity coal mines, this study simulated geosignal responses under varying operating frequencies, transmitter-receiver coil spacing conditions, and formation resistivity values. Then, key parameters for boundary detection for high-resistivity coal seams were optimized. Accordingly, this study proposed design schemes for LWD instruments with short (< 80 inches) and long (approximately 240 inches) transmitter-receiver coil spacing for short-distance (2.032 m) and long-distance (6.096 m) detection, respectively. Results and Conclusions LWD electromagnetic azimuthal measurements exhibit a significantly decreased depth of detection (DOD) in high-resistivity coal seams compared to that in low-resistivity hydrocarbon reservoirs. Consequently, the existing methods for selecting the operating frequency and transmitter-receiver coil spacing are no longer applicable. In high-resistivity coal seams, increasing the operating frequency and transmitter-receiver coil spacing appropriately can enhance the strength and DOD of geosignals. Under transmitter-receiver coil spacing of 50‒85 inches (1.270‒2.159 m) and an operating frequency of (2‒5) MHz, the DOD can reach 3 m, meeting the need for roof and floor detection. When the transmitter-receiver coil spacing increases to 5 m and the operating frequency decreases to 200‒400 kHz, the DOD of electromagnetic signals in high-resistivity coal seams can extend to 10 m, offering a foundation for long-distance detection of low-resistivity anomalies.

Keywords

logging while drilling (LWD) of electromagnetic measurement, boundary detection, high-resistivity coal seam, geosteering, parameter optimization

DOI

10.12363/issn.1001-1986.25.05.0380

Reference

[1] 陈刚,范宜仁,李泉新. 顺煤层钻进随钻方位电磁波顶底板探测影响因素[J]. 煤田地质与勘探,2019,47(6):201−206.

CHEN Gang,FAN Yiren,LI Quanxin. Influencing factors of azimuth electromagnetic wave roof and floor detection while drilling along coal seam[J]. Coal Geology & Exploration,2019,47(6):201−206.

[2] 杨震,杨锦舟,韩来聚. 随钻方位电磁波电阻率成像模拟及应用[J]. 吉林大学学报(地球科学版),2013,43(6):2035−2043.

YANG Zhen,YANG Jinzhou,HAN Laiju. Numerical simulation and application of azimuthal propagation resistivity imaging while drilling[J]. Journal of Jilin University (Earth Science Edition),2013,43(6):2035−2043.

[3] 张意,康正明,冯宏,等. 水平井煤岩界面方位电磁波测井仪器探测性能[J]. 煤田地质与勘探,2022,50(2):140−149.

ZHANG Yi,KANG Zhengming,FENG Hong,et al. Detection performance of the azimuthal electromagnetic wave logging instrument at coal–rock interface in horizontal wells[J]. Coal Geology & Exploration,2022,50(2):140−149.

[4] 王磊,刘英明,王才志,等. 水平井随钻电磁波测井实时正反演方法[J]. 石油勘探与开发,2021,48(1):139−147.

WANG Lei,LIU Yingming,WANG Caizhi,et al. Real–time forward modeling and inversion of logging–while–drilling electromagnetic measurements in horizontal wells[J]. Petroleum Exploration and Development,2021,48(1):139−147.

[5] 陈刚,张冀冠,李泉新,等. 煤层水平井中随钻电磁波仪器影响因素分析及电阻率模拟计算[J]. 煤田地质与勘探,2022,50(1):45−51.

CHEN Gang,ZHANG Jiguan,LI Quanxin,et al. Influential factors of the electromagnetic wave instrument while drilling in coal seam horizontal wells and resistivity simulation calculation[J]. Coal Geology & Exploration,2022,50(1):45−51.

[6] 江泽宇,谢洪波,文广超,等. 煤矿井下电磁波无线随钻轨迹测量系统设计与应用[J]. 煤田地质与勘探,2017,45(3):156−161.

JIANG Zeyu,XIE Hongbo,WEN Guangchao,et al. Design and application of electromagnetic radio MWD system of drilling track in coal mine[J]. Coal Geology & Exploration,2017,45(3):156−161.

[7] 石智军,李泉新,许超. 煤矿井下随钻测量定向钻进技术及应用[J]. 地质装备,2013,14(6):32−36.

[8] DOLAN J,PELL S,PFAHL M,et al. Novel use of LWD technologies help coal seam gas projects thrive[C]//SPE Asia Pacific Oil & Gas Conference and Exhibition. Virtual:Society of Petroleum Engineers,2020:SPE–202262–MS.

[9] 陈刚. 煤矿井下随钻方位电磁波仪器线圈结构设计[J]. 煤矿机械,2025,46(1):17−19.

CHEN Gang. Design of coil structure for directional electromagnetic wave instrument while drilling in underground coal mine[J]. Coal Mine Machinery,2025,46(1):17−19.

[10] 李星翰. 随钻方位电磁波电阻率成像测井数据处理技术研究[D]. 北京:中国科学院大学,2022.

LI Xinghan. Research on azimuth electromagnetic wave resistivity imaging logging data processing technology while drilling[D]. Beijing:University of Chinese Academy of Sciences,2022.

[11] 魏宝君,田坤,张旭,等. 定向电磁波传播随钻测量基本理论及其在地层界面预测中的应用[J]. 地球物理学报,2010,53(10):2507−2515.

WEI Baojun,TIAN Kun,ZHANG Xu,et al. Physics of directional electromagnetic propagation measurements–while–drilling and its application for forecasting formation boundaries[J]. Chinese Journal of Geophysics,2010,53(10):2507−2515.

[12] 陈华,范宜仁,洪德成. 随钻电磁波测井中的数学模型[J]. 数学建模及其应用,2017,6(3):26−34.

CHEN Hua,FAN Yiren,HONG Decheng. Mathematical model in electromagnetic logging while drilling[J]. Mathematical Modeling and Its Applications,2017,6(3):26−34.

[13] 杨锦舟,林楠,张海花,等. 相对介电常数对电磁波电阻率测量值的影响及校正方法[J]. 石油钻探技术,2009,37(1):29−33.

YANG Jinzhou,LIN Nan,ZHANG Haihua,et al. The impact of dielectric on MWD array electromagnetic wave resistivity tools and correction method[J]. Petroleum Drilling Techniques,2009,37(1):29−33.

[14] 王磊,范宜仁,袁超,等. 随钻方位电磁波测井反演模型选取及适用性[J]. 石油勘探与开发,2018,45(5):914−922.

WANG Lei,FAN Yiren,YUAN Chao,et al. Selection criteria and feasibility of the inversion model for azimuthal electromagnetic logging while drilling (LWD)[J]. Petroleum Exploration and Development,2018,45(5):914−922.

[15] 陈刚. 矿用随钻方位电磁波仪器正交天线响应特征[J]. 煤田地质与勘探,2025,53(2):160−166.

CHEN Gang. Response characteristics of the orthogonal antennas of electromagnetic azimuthal resistivity measurement while drilling (MWD) tool for coal mining[J]. Coal Geology & Exploration,2025,53(2):160−166.

[16] CHEN Shida,LIU Pengcheng,TANG Dazhen,et al. Identification of thin–layer coal texture using geophysical logging data:Investigation by Wavelet Transform and Linear Discrimination Analysis[J]. International Journal of Coal Geology,2021,239:103727.

[17] 张海波,滕鑫淼,毛为民,等. 基于高频电磁波的随钻探层测距雷达技术研究[J]. 石油机械,2016,44(12):7−11.

ZHANG Haibo,TENG Xinmiao,MAO Weimin,et al. Research on the drilling radar for real time reservoir boundary detection based on the high frequency electromagnetic wave[J]. China Petroleum Machinery,2016,44(12):7−11.

[18] 高杰,辛秀艳,陈文辉,等. 随钻电磁波电阻率测井之电阻率转化方法与研究[J]. 测井技术,2008,32(6):503−507.

GAO Jie,XIN Xiuyan,CHEN Wenhui,et al. Resistivity derivation in electromagnetic wave propagation resistivity logging while drilling[J]. Well Logging Technology,2008,32(6):503−507.

[19] THIEL M,OMERAGIC D. 2D lateral imaging inversion for directional electromagnetic logging–while–drilling measurements[J]. Geophysics,2019,84(6):D217−D230.

[20] LANDER L A,SILVA A,SIMON C. Resistivity logging in conductive–mud environment and high resistivity formations. Dual laterolog or propagation LWD tool?[C]//SPE Latin American and Caribbean Petroleum Engineering Conference. Quito:Society of Petroleum Engineers,2015:SPE–177084–MS.

[21] 邓少贵,蔡联云,王磊,等. 基于电阻率敏感性函数的随钻电磁波测井探测特性研究[J]. 地球物理学报,2020,63(5):2096−2106.

DENG Shaogui,CAI Lianyun,WANG Lei,et al. Research on detection characteristics of electromagnetic logging while drilling based on resistivity sensitivity function[J]. Chinese Journal of Geophysics,2020,63(5):2096−2106.

[22] 张中庆,庞兵强. 随钻电磁波测井数据处理新方法[J]. 吉林大学学报(地球科学版),2014,44(5):1720−1726.

ZHANG Zhongqing,PANG Bingqiang. A novel approach for electromagnetic logging while drilling data processing[J]. Journal of Jilin University (Earth Science Edition),2014,44(5):1720−1726.

[23] GORBATENKO A A,SUKHORUKOVA K V. High–frequency induction logging in deviated and horizontal wells:Geosteering and inversion[J]. Russian Geology and Geophysics,2016,57(7):1111−1117.

[24] DUPUIS C,DENICHOU J M. Automatic inversion of deep–directional–resistivity measurements for well placement and reservoir description[J]. The Leading Edge,2015,34(5):504−512.

[25] CLEGG N,PARKER T,DJEFEL B,et al. The final piece of the puzzle:3–D inversion of ultra–deep azimuthal resistivity LWD data[C]//SPWLA 60th Annual Logging Symposium. The Woodlands,2019:SPWLA–2019–HHH.

[26] DUPUIS C,BARRÓN V M. Avoid pilot holes,land wells,and optimize well placement and production with deep directional resistivity logging while drilling[J]. SPE Drilling & Completion,2014,29(4):473−480.

[27] BITTAR M,KLEIN J,BESTE R,et al. A new azimuthal deep–reading resistivity tool for geosteering and advanced formation evaluation[J]. SPE Reservoir Evaluation & Engineering,2009,12(2):270−279.

[28] ZHONG Ruizhi,JOHNSON R L,CHEN Zhongwei. Using machine learning methods to identify coal pay zones from drilling and logging–while–drilling (LWD) data[J]. SPE Journal,2020,25(3):1241−1258.

[29] 汪宏年,于蕾,王浩森,等. 环状刻槽钻铤中随钻方位电磁波响应的混合算法[J]. 地球物理学报,2021,64(5):1811−1829.

WANG Hongnian,YU Lei,WANG Haosen,et al. A hybrid algorithm for LWD azimuthal electromagnetic responses with annular grooved drill collar[J]. Chinese Journal of Geophysics,2021,64(5):1811−1829.

[30] ZHANG Cheng,DONG Haobin,GE Jian,et al. Theoretical channel model and characteristics analysis of EM–MWD in the underground coal mine[J]. IEEE Access,2021,9:142644−142652.

[31] WU Dagang,WU H H,LOZINSKY C,et al. Enhancing extremely high resistivity inversion through electromagnetic propagation resistivity measurements[C]//SPE Annual Technical Conference and Exhibition. New Orleans:Society of Petroleum Engineers,2024:SPE–221047–MS.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.