•  
  •  
 

Coal Geology & Exploration

Abstract

Background Underground borehole measurement emerges as a core technology for the safe production of coal mines. Its multi-parameter measurements, data accuracy, data transmission rate, and reliability directly influence the timeliness of early warning for disasters, the operating stability of instruments, the accuracy of borehole assessment, and the scientific rigor of intelligent decision-making under complex deep geological conditions. Advances So far, the measurement while drilling (MWD) and post-drilling borehole visualization techniques have developed into a diversified technological system. Specifically, the MWD technique has achieved a leap from wireline to wireless transmission, obviating the reliance on wireline drill rods in traditional measurement methods and enabling the collaborative development of the real-time monitoring of borehole trajectory parameters, stratigraphic information, and drilling conditions. For this technique, the gyroscope-based MWD system effectively addresses the issue of magnetic interference, significantly enhancing the timeliness and accuracy of measurements; the geosteering MWD system enables precise identification of coal-rock interfaces; and the engineering parameter MWD system, by integrating sensors for vibration, drilling pressure, and other parameters, provides comprehensive engineering parameters for the drilling process. By developing storage-type, push-rod-type, and drill-rig-propelled equipment, the visualization technique for post-drilling borehole measurement allows for fine-scale assessment of borehole trajectories and geological information. Prospects To address issues of borehole measurement techniques, such as low accuracy, insufficient multi-parameter fusion, and low data transmission rates, against the backdrop of intelligent coal mine construction, future research should focus on the collaborative optimization of high-precision sensors and intelligent algorithms, as well as technologies for the rapid acquisition and transmission of multiple types of data within boreholes, the intelligent optimization and control of borehole trajectories, and dynamic real-time correction of errors in post-drilling borehole measurement. These research efforts will provide core support for precise steering and safe, efficient drilling under complex underground geological conditions in coal mines, thereby driving the transition of the coal industry toward a safe, efficient, and green intelligent mining mode.

Keywords

borehole measurement, measurement while drilling (MWD), gyroscope-based MWD, geosteering, engineering parameter, post-drilling borehole measurement, borehole visualization, coal mine

DOI

10.12363/issn.1001-1986.25.07.0506

Reference

[1] 叶嗣暄. 基于神经网络的坑道近水平定向孔轨迹预测研究[J]. 钻探工程,2024,51(3):104−110

YE Sixuan. Study of the predicting model for directional drilling trajectory controlling based on neural network in tunnel[J]. Drilling Engineering,2024,51(3):104−110

[2] 李斌,杨帆,张红杰,等. 神府区块深部煤层气高效开发技术研究[J]. 煤田地质与勘探,2024,52(8):57−68.

LI Bin,YANG Fan,ZHANG Hongjie,et al. Technology for efficient production of deep coalbed methane in the Shenfu block[J]. Coal Geology & Exploration,2024,52(8):57−68.

[3] 贾建称,巩泽文,靳德武,等. 煤炭地质学“十三五”主要进展及展望[J]. 煤田地质与勘探,2021,49(1):32−44.

JIA Jiancheng,GONG Zewen,JIN Dewu,et al. The main progress in the 13th Five–Year Plan and the prospect of coal geology[J]. Coal Geology & Exploration,2021,49(1):32−44.

[4] 陈泽平,闫保永,王国震,等. 煤矿井下随钻测量技术研究现状及展望[J]. 矿业安全与环保,2022,49(6):130−134.

CHEN Zeping,YAN Baoyong,WANG Guozhen,et al. Research status and prospect of MWD technology in coal mine[J]. Mining Safety & Environmental Protection,2022,49(6):130−134.

[5] 姚宁平,姚亚峰,方鹏,等. 我国煤矿坑道钻探装备技术进展与展望[J]. 钻探工程,2021,48(1):81−87

YAO Ningping, YAO Yafeng, FANG Peng, et al. Advances and outlook of coal mine tunnel drilling equipment and technology[J]. Drilling Engineering,2021,48(1):81−87

[6] 陈龙,陈刚,张冀冠. 矿用随钻动态方位伽马仪器的研制与应用[J]. 煤田地质与勘探,2022,50(1):86−91.

CHEN Long,CHEN Gang,ZHANG Jiguan. Development and application of a mine–used dynamic azimuth gamma instrument while drilling[J]. Coal Geology & Exploration,2022,50(1):86−91.

[7] 杨冬冬,李泉新,王博,等. 一种煤矿井下自充电通缆式陀螺随钻测量系统及方法:CN119352954A[P]. 2025-01-24.

[8] 李泉新,刘飞,方俊,等. 我国煤矿井下智能化钻探技术装备发展与展望[J]. 煤田地质与勘探,2021,49(6):265−272.

LI Quanxin,LIU Fei,FANG Jun,et al. Development and prospect of intelligent drilling technology and equipment for underground coal mines in China[J]. Coal Geology & Exploration,2021,49(6):265−272.

[9] 赵旭生,马国龙. 煤矿瓦斯智能抽采关键技术研究进展及展望[J]. 煤炭科学技术,2021,49(5):27−34.

ZHAO Xusheng,MA Guolong. Research progress and prospect of key technology of intelligent gas drainage in coal mine[J]. Coal Science and Technology,2021,49(5):27−34.

[10] 和鹏飞. 渤海潜山油藏钻井配套技术的研究与应用[J]. 海洋工程装备与技术,2017,4(1):19−24.

HE Pengfei. Research and application of drill technique in Bohai Oilfield buried hill reservoir[J]. Ocean Engineering Equipment and Technology,2017,4(1):19−24.

[11] 姜燕龙. 面向近钻头随钻测量的无线电磁通信技术研究与设计[D]. 北京:中国石油大学(北京),2023.

JIANG Yanlong. Research and design of wireless electromagnetic communication technology for near–bit measurement while drilling[D]. Beijing:China University of Petroleum (Beijing),2023.

[12] 梁耀. 旋转导向系统信号传输与闭环控制关键技术研究[D]. 北京:中国石油大学(北京),2020.

LIANG Yao. Research on the key technology of RSS’s signal transmission and closed loop control[D]. Beijing:China University of Petroleum (Beijing),2020.

[13] KEITH A M. Pressure pulse generator for measurement–while–drilling systems which produces high signal strength and exhibits high resistance to jamming:US 6219301 B1[P]. 2001-04-17.

[14] 袁翔. 连续波泥浆脉冲发生器系统设计及传输特性研究[D]. 东营:中国石油大学(华东),2021.

YUAN Xiang. Continuous wave mud pulse generator system design and transmission characteristics research[D]. Dongying:China University of Petroleum (East China),2021.

[15] 卢少波. SL6000–NWD近钻头测量技术及其应用前景分析[J]. 化工管理,2015(14):136.

[16] 石林,汪海阁,纪国栋. 中石油钻井工程技术现状、挑战及发展趋势[J]. 天然气工业,2013,33(10):1−10.

SHI Lin,WANG Haige,JI Guodong. Current situation,challenges and developing trend of CNPC’s oil & gas drilling[J]. Natural Gas Industry,2013,33(10):1−10.

[17] 张轩. 连续波泥浆脉冲器旋转阀设计及性能分析[D]. 西安:西安石油大学,2024.

ZHANG Xuan. Design and performance analysis of rotary valve for continuous wave mud pulser[D]. Xi’an:Xi’an Shiyou University,2024.

[18] 胡斌,马鸿彦,黄秉亚,等. 近钻头方位伽马随钻测量系统的研制与应用[J]. 石油钻采工艺,2021,43(5):613−618.

HU Bin,MA Hongyan,HUANG Bingya,et al. Development and application of near–bit azimuth gamma MWD system[J]. Oil Drilling & Production Technology,2021,43(5):613−618.

[19] 郝世俊,褚志伟,李泉新,等. 煤矿井下近钻头随钻测量技术研究现状和发展趋势[J]. 煤田地质与勘探,2023,51(9):10−19.

HAO Shijun,CHU Zhiwei,LI Quanxin,et al. Research status and development trend of near–bit MWD in underground coal mine[J]. Coal Geology & Exploration,2023,51(9):10−19.

[20] 石智军,姚克,田宏亮,等. 煤矿井下随钻测量定向钻进技术与装备现状及展望[J]. 煤炭科学技术,2019,47(5):22−28.

SHI Zhijun,YAO Ke,TIAN Hongliang,et al. Present situation and prospect of directional drilling technology and equipment while drilling measurement in underground coal mine[J]. Coal Science and Technology,2019,47(5):22−28.

[21] 李泉新,石智军,许超,等. 2311 m顺煤层超长定向钻孔高效钻进技术[J]. 煤炭科学技术,2018,46(4):27−32.

LI Quanxin,SHI Zhijun,XU Chao,et al. Efficient drilling technique of 2311 m ultra–long directional borehole along coal seam[J]. Coal Science and Technology,2018,46(4):27−32.

[22] 李泉新. 煤矿井下复合定向钻进及配套泥浆脉冲无线随钻测量技术研究[D]. 北京:煤炭科学研究总院,2018.

LI Quanxin. Research on technology of drilling combined rotary with direction and related mud pulse MWD[D]. Beijing:China Coal Research Institute,2018.

[23] 汪凯斌. YSDC矿用电磁波随钻测量系统及在煤矿井下空气钻进中的应用[J]. 煤矿安全,2019,50(7):153−156.

WANG Kaibin. YSDC mine–used electromagnetic wave measurement while drilling system and its application in air drilling for soft coal seam[J]. Safety in Coal Mines,2019,50(7):153−156.

[24] 陈刚,范宜仁,李泉新. 顺煤层钻进随钻方位电磁波顶底板探测影响因素[J]. 煤田地质与勘探,2019,47(6):201−206.

CHEN Gang,FAN Yiren,LI Quanxin. Influencing factors of azimuth electromagnetic wave roof and floor detection while drilling along coal seam[J]. Coal Geology & Exploration,2019,47(6):201−206.

[25] 杨冬冬. 煤矿井下工程参数随钻测量系统研制与试验研究[J]. 煤矿机械,2024,45(7):27−30.

YANG Dongdong. Development and experimental research of engineering parameters measurement while drilling system in underground coal mine[J]. Coal Mine Machinery,2024,45(7):27−30.

[26] 王清峰,黄麟森. 基于外部供电的矿用随钻测量装置研究及应用[J]. 煤炭科学技术,2013,41(3):12−15.

WANG Qingfeng,HUANG Linsen. Study and application of mine measuring device with drilling based on external electric power supply[J]. Coal Science and Technology,2013,41(3):12−15.

[27] 闫保永,曹柳,张家贵. 煤层顶板裂隙带瓦斯抽采技术与装备探索[J]. 煤炭科学技术,2020,48(10):60−66.

YAN Baoyong,CAO Liu,ZHANG Jiagui. Exploration on gas drainage technology and equipment of fracture zone in coal seam roof[J]. Coal Science and Technology,2020,48(10):60−66.

[28] 黄麟森,秦怡,王国震,等. 煤矿井下水脉冲无线随钻测量系统及测量方法:CN107676078A[P]. 2018-02-09.

[29] 陕西太合智能钻探有限公司. YSX18矿用有线随钻测量系统装置[EB/OL]. (2025-08-05) [2025-08-05]. https://www.sxthtech.com/product/znzt–detail–246.htm.

[30] 陕西太合智能钻探有限公司. ZSZM16泥浆脉冲无线随钻测量装置[EB/OL]. (2025-08-05) [2025-08-05]. https://www.sxthtech.com/product/znzt–detail–248.htm.

[31] 陕西太合智能钻探有限公司. YSX16矿用无线随钻测量装置[EB/OL]. (2025-08-05) [2025-08-05]. https://www.sxthtech.com/product/znzt–detail–245.htm.

[32] 北京合康科技发展有限责任公司. YSD1000电磁波无线随钻测量装置[EB/OL]. (2025-08-05) [2025-08-05]. https://www. hekang.com/productinfo/2006881.html.

[33] 天津中探微科科技有限公司. ZSZM15矿用泥浆脉冲随钻测量装置[EB/OL]. (2025-08-05) [2025-08-05]. https://www.tjztwk.com/services/煤矿产品/zszm15/.

[34] 天津中探微科科技有限公司. ZSZC15矿用电磁波随钻测量装置[EB/OL]. (2025-08-05) [2025-08-05]. https://www.tjztwk.com/services/煤矿产品/zszc15/.

[35] 李泉新,王鲜,许超,等. 瓦斯抽采顺煤层超长距定向孔钻进关键技术[J]. 煤炭科学技术,2020,48(12):168−174.

LI Quanxin,WANG Xian,XU Chao,et al. Key technology of drilling with ultra–long–distance directional hole for gas drainage along coal seam[J]. Coal Science and Technology,2020,48(12):168−174.

[36] 王鲜,许超,刘飞,等. 顺煤层超长孔定向钻进关键装备及应用效果分析[J]. 煤炭工程,2019,51(11):46−50.

WANG Xian,XU Chao,LIU Fei,et al. Key equipment and application effect analysis of ultra–long directional drilling along coal seam[J]. Coal Engineering,2019,51(11):46−50.

[37] 燕南飞. 矿用中心通缆式钻杆关键技术研究[J]. 煤炭工程,2016,48(4):129−131.

YAN Nanfei. Research on key technology of central cable drill pipe in coal mine[J]. Coal Engineering,2016,48(4):129−131.

[38] 吕晋军. 煤矿井下用千米定向钻机通缆钻杆的研究[J]. 煤炭技术,2021,40(8):175−177.

LYU Jinjun. Research on cable drilling pipe of 1 000 m directional drilling machine used in coal mine[J]. Coal Technology,2021,40(8):175−177.

[39] 方俊,李泉新,许超,等. 松软突出煤层瓦斯抽采钻孔施工技术及发展趋势[J]. 煤炭科学技术,2018,46(5):130−137.

FANG Jun,LI Quanxin,XU Chao,et al. Construction technology and development tendency of gas drainage borehole in soft and outburst seam[J]. Coal Science and Technology,2018,46(5):130−137.

[40] 王家豪. 煤矿井下电磁波随钻测量系统关键技术研究[D]. 武汉:中国地质大学,2015.

WANG Jiahao. Research on key technology of EM–MWD in underground coal mine[D]. Wuhan:China University of Geosciences,2015.

[41] 王家豪,董浩斌,石智军,等. 煤矿井下随钻测量电磁传输信道建模[J]. 煤炭学报,2015,40(7):1705−1710.

WANG Jiahao,DONG Haobin,SHI Zhijun,et al. Modeling an EM channel for MWD in underground coal mine[J]. Journal of China Coal Society,2015,40(7):1705−1710.

[42] 王小波,张鹏. 无线电磁波随钻测量系统的发展与展望[J]. 地质装备,2024,25(1):11−17.

WANG Xiaobo,ZHANG Peng. Development and prospects of wireless electromagnetic wave measurement while drilling system[J]. Equipment for Geotechnical Engineering,2024,25(1):11−17.

[43] 燕斌. 煤矿井下矿用本安型钻机开孔定向仪的研制[J]. 仪表技术与传感器,2021(5):63−66.

YAN Bin. Development of orientation instrument for opening of intrinsically safe drilling rig in coal mine[J]. Instrument Technique and Sensor,2021(5):63−66.

[44] 张冀冠,丛琳,王小龙. 光纤陀螺在煤矿井下的应用研究[J]. 电子测试,2016(14):125−126.

ZHANG Jiguan,CONG Lin,WANG Xiaolong. Research on the application of fiber optic gyroscope in coal mine[J]. Electronic Test,2016(14):125−126.

[45] 丛琳,蒋必辞. 煤矿井下复杂环境陀螺随钻测斜方法研究[J]. 中国锰业,2017,35(4):144−146.

CONG Lin,JIANG Bici. A study on gyroscope MWD inclinometer in complex environment of coal mine[J]. China’s Manganese Industry,2017,35(4):144−146.

[46] 谭欣. 基于MEMS陀螺的随钻轨迹测定研究[D]. 淮南:安徽理工大学,2023.

TAN Xin. Research on trajectory measurement while drilling based on MEMS gyroscope[D]. Huainan:Anhui University of Science & Technology,2023.

[47] 郑泽南. MEMS陀螺随钻测量误差补偿研究[D]. 焦作:河南理工大学,2023.

ZHENG Zenan. Research on error compensation of MEMS gyroscope measurement while drilling[D]. Jiaozuo:Henan Polytechnic University,2023.

[48] 方俊. 矿用有线地质导向随钻测量装置及钻进技术[J]. 煤炭科学技术,2017,45(11):168−173.

FANG Jun. Mine cable geosteering MWD device and geological directional drilling technology[J]. Coal Science and Technology,2017,45(11):168−173.

[49] 王小龙. 矿用随钻方位伽马测井仪的设计与试验[J]. 煤炭科学技术,2016,44(8):161−167.

WANG Xiaolong. Design and experiment of mine azimuth gamma logging instrument while drilling[J]. Coal Science and Technology,2016,44(8):161−167.

[50] 汪凯斌. 矿用电磁波随钻方位伽马测井系统的研究与实现[J]. 煤田地质与勘探,2018,46(3):145−151.

WANG Kaibin. Research and realization of the mine electromagnetic wave azimuth gamma logging system while drilling[J]. Coal Geology & Exploration,2018,46(3):145−151.

[51] 雷光晨. 随钻方位伽马成像嵌入式系统研究与实现[D]. 北京:中国石油大学(北京),2017.

LEI Guangchen. Research and implementation on embedded system for LWD azimuthal gamma imaging[D]. Beijing:China University of Petroleum (Beijing),2017.

[52] 王小龙,代晨昱,蔺兑波. 矿用电磁波随钻测量仪及在回转钻进中的应用[J]. 煤炭技术,2025,44(2):219−223.

WANG Xiaolong,DAI Chenyu,LIN Duibo. Mine–used EM–MWD instrument and application in rotary drilling[J]. Coal Technology,2025,44(2):219−223.

[53] 杨雪,潘保芝,汪凯斌,等. 随钻方位伽马测井快速正演及定向井动态监测[J]. 地球物理学进展,2016,31(1):403−410.

YANG Xue,PAN Baozhi,WANG Kaibin,et al. Fast forward method for LWD azimuth gamma–ray and dynamic monitoring of directional wells[J]. Progress in Geophysics,2016,31(1):403−410.

[54] 陈刚. 矿用随钻方位电磁波仪器正交天线响应特征[J]. 煤田地质与勘探,2025,53(2):160−166.

CHEN Gang. Response characteristics of the orthogonal antennas of electromagnetic azimuthal resistivity measurement while drilling (MWD) tool for coal mining[J]. Coal Geology & Exploration,2025,53(2):160−166.

[55] 田小超,王博,李渊. 矿用电磁波随钻测斜仪在松软煤层钻进中的应用研究[J]. 中国煤炭,2020,46(8):53−56.

TIAN Xiaochao,WANG Bo,LI Yuan. Application research of mine electromagnetic wave inclinometer while drilling in soft coal seam[J]. China Coal,2020,46(8):53−56.

[56] 姚文彬,李辉,尚捷,等. 随钻自然伽马测井仪研制[J]. 电子测量技术,2013,36(6):42−45.

YAO Wenbin,LI Hui,SHANG Jie,et al. Development of natural gamma tool used in logging while drilling[J]. Electronic Measurement Technology,2013,36(6):42−45.

[57] 张勇,高佳佳,常俊杰. 高瓦斯矿井覆岩两带高度数值模拟分析与实践[J]. 中州煤炭,2015,37(1):1−3.

ZHANG Yong,GAO Jiajia,CHANG Junjie. Numerical simulation analysis on “two zone” height in high gas mine and its practice[J]. Zhongzhou Coal,2015,37(1):1−3.

[58] CAYEUX E,DAIREAUX B,DVERGSNES E W,et al. Toward drilling automation:On the necessity of using sensors that relate to physical models[J]. SPE Drilling & Completion,2014,29(2):236−255.

[59] SCHILS S,TEELKEN R,VAN BURKLEO B,et al. The use of wired drillpipe technology in a complex drilling environment increased drilling efficiency and reduced well times[C]//IADC/SPE Drilling Conference and Exhibition. Fort Worth:Society of Petroleum Engineers,2016:SPE–178863–MS.

[60] 赵昱,张拉拉. 井下工程参数测量仪的研制与现场应用[J]. 录井工程,2017,28(2):13−17.

ZHAO Yu,ZHANG Lala. Development and field application of downhole engineering parameter measuring instrument[J]. Mud Logging Engineering,2017,28(2):13−17.

[61] 姜海龙,柳贡慧,李军,等. 井下工程参数测量系统的研制与应用[J]. 钻采工艺,2020,43(1):5−8.

JIANG Hailong,LIU Gonghui,LI Jun,et al. Development and application of downhole engineering data measurement system[J]. Drilling & Production Technology,2020,43(1):5−8.

[62] 陈超博. 煤矿井下定向钻进孔底工程参数监测与分析技术研究[D]. 北京:煤炭科学研究总院,2023.

CHEN Chaobo. Research on the monitoring and analysis technology of engineering parameters at the bottom of directional drilling holes in coal mines[D]. Beijing:China Coal Research Institute,2023.

[63] 李豪君,张家行,谯永刚,等. 液态CO2相变致裂参数及应用效果研究[J]. 煤炭技术,2021,40(10):149−152.

LI Haojun,ZHANG Jiahang,QIAO Yonggang,et al. Study on cracking parameters and application effect of liquid carbon dioxide fracturing[J]. Coal Technology,2021,40(10):149−152.

[64] 张鹏. 矿用存储式随钻轨迹测量仪的研究及应用[J]. 电子测试,2017(11):7−10.

ZHANG Peng. Research and application of mine storage trace while drilling instrument[J]. Electronic Test,2017(11):7−10.

[65] 王博. 基于Android系统的多功能矿用本安型钻孔成像仪设计与应用[J]. 煤炭技术,2019,38(5):151−154.

WANG Bo. Design and application of multifunctional mining intrinsic safety drill imager based on Android system[J]. Coal Technology,2019,38(5):151−154.

[66] 田小超,姜旭,闫文超. 钻孔组合式多参数测量仪探管结构设计[J]. 煤矿机械,2024,45(2):103−105.

TIAN Xiaochao,JIANG Xu,YAN Wenchao. Design of probe tube structure of borehole combined type multi–parameter measuring instrument[J]. Coal Mine Machinery,2024,45(2):103−105.

[67] 焦积润. 矿用钻孔测井分析仪在地质防探水中的应用[J]. 山东煤炭科技,2016,34(6):152−153.

JIAO Jirun. Application of mine drilling and logging analysis instrument in geological exploration water[J]. Shandong Coal Science and Technology,2016,34(6):152−153.

[68] 李帅帅,褚志伟. 可视化打捞技术在定向钻孔孔内事故中的应用[J]. 煤矿机械,2022,43(6):160−162.

LI Shuaishuai,CHU Zhiwei. Application of visual fishing technology in hole accident of directional drilling[J]. Coal Mine Machinery,2022,43(6):160−162.

[69] 韩敏. CXK12 (A) 矿用钻孔成像仪在阳煤一矿的应用探讨[J]. 机械管理开发,2019,34(3):173−174.

HAN Min. Application of CXK12 (A) borehole imager in Yangquan No. 1 coal mine[J]. Mechanical Management and Development,2019,34(3):173−174.

[70] 高珺. 基于钻探机械的地质信息探测装置研究[J]. 煤矿机械,2022,43(9):110−112.

GAO Jun. Research on geological information detection device based on drilling machinery[J]. Coal Mine Machinery,2022,43(9):110−112.

[71] 刘放,杨飞. 基于双摄像头组合成像的钻孔成像系统[J]. 科学技术与工程,2022,22(31):13863−13869.

LIU Fang,YANG Fei. Borehole imaging system based on integral imaging of dual–camera[J]. Science Technology and Engineering,2022,22(31):13863−13869.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.