•  
  •  
 

Coal Geology & Exploration

Abstract

Objective Coal mining-induced disturbance leads to water redistribution in the vadose zones of mining areas. The sensitivity analysis of the factors influencing this redistribution holds critical significance for the reconstruction of eco-geological environments and the sustainable economic development in mining areas. Methods Against the engineering background of the Yushen mining area characterized by wind-blown sandy terrain in northern Shaanxi Province, this study analyzed the primary factors influencing water redistribution in the vadose zone under coal mining disturbance. Accordingly, 18 COMSOL Multiphysics numerical models for water redistribution in the vadose zone under coal mining disturbance were constructed through orthogonal experiments. Using these models, the theoretical average saturation along three monitoring lines at burial depths of 6.2 m, 7.0 m, and 7.8 m was derived to recover the coal mining disturbance of the pre-mining stage. Through the range analysis and multiple linear regression analysis, this study clarified the sensitivity of the factors influencing water redistribution in the vadose zone under coal mining disturbance and further determined the weights of the primary influential factors using the analytic hierarchy process (AHP).Results and Conclusions From the perspective of stratigraphic structure, hydrogeological conditions, and mining conditions, the primary factors influencing water redistribution in the vadose zone under coal mining disturbance included the ratio of the sandy loam thickness to the sandy clay thickness (a), initial porosity (p), initial number of fractures (l), the matrix permeability coefficient of the vadose zone (K1), fracture permeability coefficient (K2), and coal seam mining height (b). Under coal mining disturbance, the overall water redistribution in the vadose zone was primarily influenced by factors a and K2, along with minor influence from factors l, b, and K1. Based on the range analysis and multiple linear regression analysis of the orthogonal experimental results, the sensitivity of these factors decreased in the order of a, K2, p, b, l, and K1. Following the sensitivity ranking of these factors, the weights of the primary factors were determined at 38.25% (a), 25.04% (K2), 15.96% (p), 10.06% (b), 6.41% (l), and 4.28% (K1) using the AHP. The sensitivity ranking was consistent with the weight ranking, with both substantiating each other. The results of this study hold great significance for reconstructing the ecological security patterns and constructing green mines in ecologically vulnerable areas within western China.

Keywords

ecologically vulnerable area, coal seam mining, vadose water, influential factor, orthogonal experiment, sensitivity

DOI

10.12363/issn.1001-1986.25.08.0582

Reference

[1] 王强民,赵春虎,王皓,等. 寒旱露天矿区土壤水分运移规律及其生态效应[J]. 煤田地质与勘探,2023,51(6):103−110.

WANG Qiangmin,ZHAO Chunhu,WANG Hao,et al. Soil moisture migration mechanism and its ecological effect in cold and arid open–pit coal mining area[J]. Coal Geology & Exploration,2023,51(6):103−110.

[2] 侯恩科,慕佳欣,谢晓深,等. 浅埋煤层开采地表裂缝发育规律及形成演化机理[J]. 煤田地质与勘探,2025,53(2):107−117.

HOU Enke,MU Jiaxin,XIE Xiaoshen,et al. Developmental patterns and formation and evolutionary mechanisms of surface cracks induced by the mining of shallowly buried coal seams[J]. Coal Geology & Exploration,2025,53(2):107−117.

[3] 陈天赐,徐智敏,孙亚军,等. 露天矿区“四水”资源转化关系与立体储存利用模式[J]. 煤田地质与勘探,2025,53(7):203−214.

CHEN Tianci,XU Zhimin,SUN Yajun,et al. Conversion relationships and three–dimensional storage and utilization modes of four water resources in an open–pit mining area[J]. Coal Geology & Exploration,2025,53(7):203−214.

[4] 王强民,董书宁,王皓,等. 西部风沙区采煤塌陷地裂缝影响下的土壤水分运移规律及调控方法[J]. 煤炭学报,2021,46(5):1532−1540.

WANG Qiangmin,DONG Shuning,WANG Hao,et al. Influence of mining subsidence on soil water movement law and its regulation in blown–sand area of western China[J]. Journal of China Coal Society,2021,46(5):1532−1540.

[5] 毕银丽,刘京,尚建选,等. 陕北采煤沉陷区土壤水分入渗和蒸发特征研究[J]. 中国矿业大学学报,2022,51(5):839−849.

BI Yinli,LIU Jing,SHANG Jianxuan,et al. Study on the characteristics of soil moisture infiltration and evaporation in the coal mining subsidence area of coal mines in northern Shaanxi[J]. Journal of China University of Mining & Technology,2022,51(5):839−849.

[6] 宋亚新. 神府–东胜采煤塌陷区包气带水分运移及生态环境效应研究[D]. 北京:中国地质科学院,2007.

SONG Yaxin. Soil water migration & environment effect in Shenfu–Dongsheng subsidence area[D]. Beijing:Chinese Academy of Geological Sciences,2007.

[7] 赵红梅. 采矿塌陷条件下包气带土壤水分布与动态变化特征研究[D]. 北京:中国地质科学院,2006.

ZHAO Hongmei. Research of soil water distribution and dynamic characteristics under the coal mining condition[D]. Beijing:Chinese Academy of Geological Sciences,2006.

[8] 张凯,刘舒予,白璐,等. 西北地区采煤沉陷对地表生态环境的影响研究[M]. 北京:化学工业出版社,2023.

[9] 张健. 采动地裂缝土壤水分运移规律及伤根微生物修复机理[D]. 北京:中国矿业大学(北京),2020.

ZHANG Jian. The movement law of soil water around mining ground fissures and the mechanism of microbial remediation on root damage[D]. Beijing:China University of Mining & Technology (Beijing),2020.

[10] 陈小洋,李力. 煤矿塌陷区中心位置地表土壤水分空间异质性及其影响因素分析[J]. 矿业安全与环保,2022,49(6):123−129.

CHEN Xiaoyang,LI Li. Spatial heterogeneity of soil moisture content and its influencing factors in the center of coal mining subsidence area[J]. Mining Safety & Environmental Protection,2022,49(6):123−129.

[11] WU Zhiyuan,CUI Fan,NIE Junli,et al. Research on soil water content variation in coal mining area based on ground–penetrating radar[J]. International Journal of Environmental Science and Technology,2022,19(6):5097−5108.

[12] 吴志远,彭苏萍,崔凡,等. 探地雷达结合钻孔探测采煤塌陷区土壤剖面层次及含水率[J]. 农业工程学报,2019,35(14):243−251.

WU Zhiyuan,PENG Suping,CUI Fan,et al. Using ground penetrating radar combined with borehole to detect soil profile and water content in coal mining subsidence area[J]. Transactions of the Chinese Society of Agricultural Engineering,2019,35(14):243−251.

[13] XU Wanxia,WANG Jinman,ZHANG Min,et al. Construction of landscape ecological network based on landscape ecological risk assessment in a large–scale opencast coal mine area[J]. Journal of Cleaner Production,2021,286:125523.

[14] 王格,郭欣伟,党素珍. 采煤扰动下潜水位及包气带水分变化特征[J]. 农业工程学报,2022,38(6):105−112.

WANG Ge,GUO Xinwei,DANG Suzhen. Variation characteristics of water table and water content in vadose zone under disturbance of coal mining[J]. Transactions of the Chinese Society of Agricultural Engineering,2022,38(6):105−112.

[15] 宋世杰,成星,王双明,等. 黄河中游陕北煤矿区采动地裂缝对土壤入渗特性的影响及其侵蚀效应[J]. 煤炭学报,2025,50(2):1234−1248.

SONG Shijie,CHENG Xing,WANG Shuangming,et al. Influence of mining–induced ground fissures on soil infiltration characteristics and its erosion effect in coal mining area of northern Shaanxi in the middle reaches of the Yellow River[J]. Journal of China Coal Society,2025,50(2):1234−1248.

[16] 余露,白光宇,周建伟,等. 呼伦贝尔某煤矿区地境结构特征及其对草原生态恢复的意义[J]. 安全与环境工程,2019,26(4):29−36.

YU Lu,BAI Guangyu,ZHOU Jianwei,et al. Characteristics of below–ground habitat in a coal mine in Hulun Buir and its significance for prairie ecological restoration[J]. Safety and Environmental Engineering,2019,26(4):29−36.

[17] 薛鑫磊,崔建廷,王兆峰,等. 内蒙古高家梁煤矿采空地面塌陷特征及影响因素分析[J]. 科学技术与工程,2025,25(12):4947−4956.

XUE Xinlei,CUI Jianting,WANG Zhaofeng,et al. Analysis of characteristics and influencing factors of mining–induced ground subsidence in Gaojialiang Coal Mine of Inner Mongolia[J]. Science Technology and Engineering,2025,25(12):4947−4956.

[18] 郝大海,姚玉增,关长庆,等. 基于高分辨率遥感技术的辽宁大孤山铁矿排土场滑坡灾害评价[J]. 世界地质,2020,39(4):937−945.

HAO Dahai,YAO Yuzeng,GUAN Changqing,et al. Evaluation of landslide disaster at Dagushan iron mine dump in Liaoning based on high resolution remote sensing technology[J]. Global Geology,2020,39(4):937−945.

[19] YU Xueyi,MAO Xuwei. A preliminary discrimination model of a deep mining landslide and its application in the Guanwen Coal Mine[J]. Bulletin of Engineering Geology and the Environment,2020,79(1):485−493.

[20] 侯恩科,谢晓深,王双明,等. 中埋深煤层综采地表裂缝发育规律研究[J]. 采矿与安全工程学报,2021,38(6):1178−1188.

HOU Enke,XIE Xiaoshen,WANG Shuangming,et al. Development law of ground cracks induced by fully–mechanized mining of medium–buried coal seams[J]. Journal of Mining and Safety Engineering,2021,38(6):1178−1188.

[21] 杨泽元,范立民,许登科,等. 陕北风沙滩地区采煤塌陷裂缝对包气带水分运移的影响:模型建立[J]. 煤炭学报,2017,42(1):155−161.

YANG Zeyuan,FAN Limin,XU Dengke,et al. Influence of fissures due to coal mining on moisture transportation in the vadose zone in the blown–sand region of the northern Shaanxi Province:Model establishment[J]. Journal of China Coal Society,2017,42(1):155−161.

[22] 台晓丽,胡振琪,陈超. 西部风沙区不同采煤沉陷区位土壤水分中子仪监测[J]. 农业工程学报,2016,32(15):225−231.

TAI Xiaoli,HU Zhenqi,CHEN Chao. Monitoring soil moisture at different subsidence areas of mining in western windy and sandy region with neutron instrument[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(15):225−231.

[23] 王旭东,张锁,邢朕国,等. 新街台格庙矿区大气降水有效补给深度研究[J]. 中国煤炭,2025,51(4):167−173.

WANG Xudong,ZHANG Suo,XING Zhenguo,et al. Study on effective recharge depth of precipitation in Xinjie Taigemiao mining area[J]. China Coal,2025,51(4):167−173.

[24] 王涛涛,张蓓,陈慧华,等. HYDRUS及其耦合模型研究与应用进展[J]. 水文地质工程地质,2025,52(2):72−84.

WANG Taotao,ZHANG Bei,CHEN Huihua,et al. Progress in developments and applications of the HYDRUS model and associated coupling model packages[J]. Hydrogeology & Engineering Geology,2025,52(2):72−84.

[25] 刘士亮,郑雨生,王傲. 采煤塌陷裂缝对包气带水分运移规律影响数值模拟研究[J]. 矿业安全与环保,2023,50(6):29−36.

LIU Shiliang,ZHENG Yusheng,WANG Ao. Numerical simulation of the influence of coal mining subsidence cracks on the moisture migration law in the vadose zone[J]. Mining Safety & Environmental Protection,2023,50(6):29−36.

[26] 王铭森,邓斌,张晚祺,等. 非均质包气带土壤含水量分布定量刻画及其模拟[J/OL]. 地质科技通报,2024:1–14 [2024-11-29]. https://link.cnki.net/doi/10.19509/j.cnki.dzkq.tb20240256.

WANG Mingsen,DENG Bin,ZHANG Wanqi,et al. Quantitative characterization and simulation of soil moisture distribution in heterogeneous vadose zone[J/OL]. Bulletin of Geological Science and Technology,2024:1–14 [2024-11-29]. https://link.cnki.net/doi/10.19509/j.cnki.dzkq.tb20240256.

[27] 黄小琴,张一冰,张勃,等. 非灌期层状结构包气带含水率特征[J]. 中国农村水利水电,2023(6):222−225.

HUANG Xiaoqin,ZHANG Yibing,ZHANG Bo,et al. Characteristics of water content for the vadose zone with stratified structures in the non–irrigation period[J]. China Rural Water and Hydropower,2023(6):222−225.

[28] 刘秀花,田书林,马延东,等. 毛乌素沙地包气带气态水同位素特征及其运移规律[J]. 农业工程学报,2024,40(4):112−120.

LIU Xiuhua,TIAN Shulin,MA Yandong,et al. Isotopic characteristics and migration of water vapor in the vadose zone of Mu Us Sandy Land[J]. Transactions of the Chinese Society of Agricultural Engineering,2024,40(4):112−120.

[29] 谢金艳,孙芳强,邹丽蓉,等. 厚层包气带土壤水氢氧同位素特征及其补给来源判别[J]. 地球与环境,2020,48(6):728−735.

XIE Jinyan,SUN Fangqiang,ZOU Lirong,et al. Hydrogen and oxygen isotope signatures of soil water in the thick unsaturated zone and the source identification[J]. Earth and Environment,2020,48(6):728−735.

[30] 赵文智,周宏,刘鹄. 干旱区包气带土壤水分运移及其对地下水补给研究进展[J]. 地球科学进展,2017,32(9):908−918.

ZHAO Wenzhi,ZHOU Hong,LIU Hu. Advances in moisture migration in vadose zone of dryland and recharge effects on groundwater dynamics[J]. Advances in Earth Science,2017,32(9):908−918.

[31] 刘成功,贾小旭,邵明安. 地球物理方法在土壤水文过程研究中的应用与展望[J]. 土壤,2022,54(1):24−31.

LIU Chenggong,JIA Xiaoxu,SHAO Ming’an. Application and prospect of geophysical methods in study of soil hydrological processes[J]. Soils,2022,54(1):24−31.

[32] 庞忠和,黄天明,杨硕,等. 包气带在干旱半干旱地区地下水补给研究中的应用[J]. 工程地质学报,2018,26(1):51−61.

PANG Zhonghe,HUANG Tianming,YANG Shuo,et al. The potential of the unsaturated zone in groundwater recharge in arid and semiarid areas[J]. Journal of Engineering Geology,2018,26(1):51−61.

[33] YE Qiang,HUANG Zijie,ZHENG Qiang,et al. Predicting water movement in unsaturated soil using physics–informed deep operator networks[J]. Advances in Water Resources,2025,202:105001.

[34] LI Xiang,NIEBER J L,KUMAR V. Machine learning applications in vadose zone hydrology:A review[J]. Vadose Zone Journal,2024,23(4):e20361.

[35] 魏永强,刘昌军,陈奕如,等. 基于时空变源混合产流模型的降雨–径流过程模拟:以湖南省斗山桥水库为例[J]. 中国防汛抗旱,2025,35(1):19−23.

WEI Yongqiang,LIU Changjun,CHEN Yiru,et al. Rainfall–runoff process simulation based on the spatiotemporal variable source hybrid hydrological model:A case study of the Doushanqiao Reservoir in Hunan Province[J]. China Flood & Drought Management,2025,35(1):19−23.

[36] 徐蓓艺,王策,周光扬,等. 地下水污染风险评价研究现状与展望[J]. 煤田地质与勘探,2024,52(11):55−71.

XU Beiyi,WANG Ce,ZHOU Guangyang,et al. State of the art and future directions in groundwater contamination risk assessment[J]. Coal Geology & Exploration,2024,52(11):55−71.

[37] 李伟健,王锦国,陈波,等. 多场耦合作用下包气带水分运动对地下水水位响应规律研究[J/OL]. 水文地质工程地质,2025:1–12 (2025-10-25) [2025-09-24]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=SWDG20250922001&dbname=CJFD&dbcode=CJFQ.

LI Weijian,WANG Jinguo,CHEN Bo,et al. Responses of moisture movement to water table under multi–field coupling effects in the vadose zone[J/OL]. Hydrogeology & Engineering Geology,2025:1–12 (2025-10-25) [2025-09-24]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=SWDG20250922001&dbname=CJFD&dbcode=CJFQ.

[38] 汪勇. 干旱区绿洲生态安全与地下水位调控研究[D]. 北京:中国水利水电科学研究院,2019.

WANG Yong. Study on ecological security and groundwater level regulation in arid areas[D]. Beijing:China Institute of Water Resources and Hydropower Research,2019.

[39] 崔浩浩,张光辉,张亚哲,等. 层状非均质包气带渗透性特征及其对降水入渗的影响[J]. 干旱地区农业研究,2020,38(3):1−9.

CUI Haohao,ZHANG Guanghui,ZHANG Yazhe,et al. Permeability characteristics of layered–heterogeneous vadose zone and influence on precipitation infiltration[J]. Agricultural Research in the Arid Areas,2020,38(3):1−9.

[40] 李禹凝,王金满,张雅馥,等. 干旱半干旱煤矿区土壤水分研究进展[J]. 土壤,2023,55(3):494−502.

LI Yuning,WANG Jinman,ZHANG Yafu,et al. Soil water in arid and semi–arid mining areas:A review[J]. Soils,2023,55(3):494−502.

[41] 王渝淞. 海河流域典型关键带水分运动及其转化过程[D]. 北京:北京林业大学,2023.

WANG Yusong. Water movement and its transformation process in the typical critical zone of the Haihe River Basin[D]. Beijing:Beijing Forestry University,2023.

[42] 谢晓深,侯恩科,王双明,等. 黄河中游榆神府矿区采动含水层失水模式及保护技术[J]. 煤炭科学技术,2023,51(12):197−207.

XIE Xiaoshen,HOU Enke,WANG Shuangming,et al. Study on water loss model and prediction technology of aquifer induced by coal mining in Yushenfu mining area in the middle reaches of the Yellow River[J]. Coal Science and Technology,2023,51(12):197−207.

[43] 胡振琪,陈超. 风沙区井工煤炭开采对土地生态的影响及修复[J]. 矿业科学学报,2016,1(2):120−130.

HU Zhenqi,CHEN Chao. Impact of underground coal mining on land ecology and its restoration in windy and sandy region[J]. Journal of Mining Science and Technology,2016,1(2):120−130.

[44] 王傲. 采煤塌陷沉降扰动下土壤孔裂隙结构对包气带水分运移影响机制研究[D]. 济南:山东大学,2025.

WANG Ao. Influence mechanism of soil pore and crack structure on water migration in vadose zone under the influence of coal mining subsidence disturbance[D]. Jinan:Shandong University,2025.

[45] 刘伟韬,廖尚辉,刘士亮,等. 基于层次分析法和D–S证据理论的底板突水风险评估方法[J]. 煤炭技术,2016,35(1):150−152.

LIU Weitao,LIAO Shanghui,LIU Shiliang,et al. Assessment method of water outbursts from coal seam floor based on AHP and D–S evidence theory[J]. Coal Technology,2016,35(1):150−152.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.