Coal Geology & Exploration
Abstract
Objective Research on in situ stress serves as a bridge between geological and engineering analyses. Accurate insights into in situ stress regimes are crucial for ensuring engineering efficiency and development benefits. However, microstructures are well developed in deep coal seams, for which no effective model is currently available for calculating in situ stress. Methods and Results By classifying structures into macrostructures and microstructures, this study established a novel model for calculating in situ stress in deep coal seams while considering microstructural characteristics. In the novel model, the horizontal in situ stress was decomposed into three components: the horizontal components induced by vertical stress and macroscopic and microscopic tectonic stresses. The novel model allows for the simultaneous calculation of the magnitude and orientations of in situ stress through stress tensor decomposition. This model was applied to calculate in situ stress in two vertical wells. The calculated magnitudes and orientations of in situ stress were compared with acoustic emission experimental data and log interpretation data, respectively, yielding maximum relative errors of 8.20% and 4.58%. Based on the novel model and the data from adjacent wells, the magnitudes and orientations of in situ stress in three unlogged horizontal wells were calculated in a staged manner. The predicted in situ stress orientations were validated using microseismic monitoring results, yielding relative errors ranging from 0.29% to 13.89%. Based on the calculated in situ stress, the propagation morphologies of simulated fractures in a horizontal well were predicted. The prediction results aligned well with microseismic monitoring results. The novel model provides a new approach for calculating in situ stress, enabling fine-scale determination of in situ stress within individual wells.Conclusions The fine-scale calculation results of in situ stress hold great values in applications in two aspects in the field of petroleum engineering: (1) in drilling engineering, accurate in situ stress parameters help significantly enhance the reliability of wellbore stability analysis, optimize drilling fluid density design, and mitigate the risks of wellbore collapse and lost circulation; (2) In reservoir fracturing, single-well in situ stress profiles can provide guidance the design of fracturing stages and clusters to effectively mitigate stress shadowing effects and enhance the complexity and conductivity of fracture networks, thereby achieving efficient reservoir stimulation and production growth.
Keywords
deep coalbed methane, in situ stress, macrostructure, microstructure, in situ stress component, microseismic monitoring
DOI
10.12363/issn.1001-1986.25.03.0216
Recommended Citation
ZHAO Haifeng, SHI Hongwei, XIE Fei,
et al.
(2025)
"A novel model for calculating in situ stress within deep coal seams considering microstructural characteristics and its application,"
Coal Geology & Exploration: Vol. 53:
Iss.
11, Article 13.
DOI: 10.12363/issn.1001-1986.25.03.0216
Available at:
https://cge.researchcommons.org/journal/vol53/iss11/13
Reference
[1] 赖锦,白天宇,肖露,等. 地应力测井评价方法及其地质与工程意义[J]. 石油与天然气地质,2023,44(4):1033−1043.
LAI Jin,BAI Tianyu,XIAO Lu,et al. Well–logging evaluation of in–situ stress fields and its geological and engineering significances[J]. Oil & Gas Geology,2023,44(4):1033−1043.
[2] 楼一珊. 地应力在油气田开发中的应用[J]. 石油钻探技术,1997,25(3):58−59.
[3] 申瑞臣,屈平,杨恒林. 煤层井壁稳定技术研究进展与发展趋势[J]. 石油钻探技术,2010,38(3):1−7.
SHEN Ruichen,QU Ping,YANG Henglin. Advancement and development of coal bed wellbore stability technology[J]. Petroleum Drilling Techniques,2010,38(3):1−7.
[4] 邓燕,郭建春,赵金洲. 综合求取地应力剖面新方法及其应用[J]. 岩性油气藏,2011,23(2):124−127.
DENG Yan,GUO Jianchun,ZHAO Jinzhou. New method for calculating in–situ stress profile and its application[J]. Lithologic Reservoirs,2011,23(2):124−127.
[5] 王越,姚昌宇,高志军,等. 利用常规测井资料计算地应力:以泾河油田延长组储层为例[J]. 新疆石油天然气,2014,10(1):92−97.
WANG Yue,YAO Changyu,GAO Zhijun,et al. Calculation of geostress by using conventional logging[J]. Xinjiang Oil & Gas,2014,10(1):92−97.
[6] 姚瑞,杨树新,谢富仁,等. 青藏高原及周缘地壳浅层构造应力场量值特征分析[J]. 地球物理学报,2017,60(6):2147−2158.
YAO Rui,YANG Shuxin,XIE Furen,et al. Analysis on magnitude characteristics of the shallow crustal tectonic stress field in Qinghai–Tibet plateau and its adjacent region based on in–situ stress data[J]. Chinese Journal of Geophysics,2017,60(6):2147−2158.
[7] 徐珂. 南堡凹陷高尚堡油藏现今地应力研究[D]. 东营:中国石油大学(华东),2019.
XU Ke. Current in–situ stress of Gaoshangpu reservoir,Nanpu Sag,Bohai Bay Basin,China[D]. Dongying:China University of Petroleum (East China),2019.
[8] 朱海燕,宋宇家,唐煊赫. 页岩气储层四维地应力演化及加密井复杂裂缝扩展研究进展[J]. 石油科学通报,2021,6(3):396−416.
ZHU Haiyan,SONG Yujia,TANG Xuanhe. Research progress on 4–dimensional stress evolution and complex fracture propagation of infill wells in shale gas reservoirs[J]. Petroleum Science Bulletin,2021,6(3):396−416.
[9] JU Wei,SHEN Jian,QIN Yong,et al. In–situ stress state in the Linxing region,eastern Ordos Basin,China:Implications for unconventional gas exploration and production[J]. Marine and Petroleum Geology,2017,86:66−78.
[10] NEWBERRY B M,NELSON R F,AHMED U. Prediction of vertical hydraulic fracture migration using compressional and shear wave slowness[C]//SPE/DOE Low Permeability Gas Reservoirs Symposium. Richardson:Society of Petroleum Engineers,1985:SPE–13895–MS.
[11] 黄荣樽,庄锦江. 一种新的地层破裂压力预测方法[J]. 石油钻采工艺,1986,8(3):1−14.
[12] 于江龙,陈刚,吴俊军,等. 玛湖凹陷风城组页岩油地质工程甜点地震预测方法及应用[J]. 新疆石油地质,2022,43(6):757−766.
YU Jianglong,CHEN Gang,WU Junjun,et al. Seismic prediction method of geological and engineering shale oil sweet spots and its application in Fengcheng Formation of Mahu Sag[J]. Xinjiang Petroleum Geology,2022,43(6):757−766.
[13] 李志明,张金珠. 地应力与油气勘探开发[M]. 北京:石油工业出版社,1997.
[14] 夏宏泉,刘畅,李高仁,等. 基于测井资料的TIV地层水平地应力计算方法[J]. 石油钻探技术,2019,47(6):67−72.
XIA Hongquan,LIU Chang,LI Gaoren,et al. A logging data–based calculation method for the horizontal TIV Formation in–situ stress[J]. Petroleum Drilling Techniques,2019,47(6):67−72.
[15] AMADEI B,SWOLFS H S,SAVAGE W Z. Gravity–induced stresses in stratified rock masses[J]. Rock Mechanics and Rock Engineering,1988,21(1):1−20.
[16] 刘建伟,张云银,曾联波,等. 非常规油藏地应力和应力甜点地球物理预测:渤南地区沙三下亚段页岩油藏勘探实例[J]. 石油地球物理勘探,2016,51(4):792−800.
LIU Jianwei,ZHANG Yunyin,ZENG Lianbo,et al. Geophysical prediction of stress and stress desserts in unconventional reservoirs:An example in Bonan area[J]. Oil Geophysical Prospecting,2016,51(4):792−800.
[17] 孟宪波,徐佑德,张曰静,等. 多场耦合作用下致密储层地应力场变化规律研究:以准噶尔盆地某区为例[J]. 地质力学学报,2019,25(4):467−474.
MENG Xianbo,XU Youde,ZHANG Yuejing,et al. Study on the variation law of crustal stress field in tight reservoir under multi field coupling[J]. Journal of Geomechanics,2019,25(4):467−474.
[18] 黄荣樽. 地层破裂压力预测模式的探讨[J]. 华东石油学院学报,1984,8(4):335−347.
HUANG Rongzun. A model for predicting formation fracture pressure[J]. Journal of China University of Petroleum (Edition of Natural Science),1984,8(4):335−347.
[19] ROBERTS A. Curvature attributes and their application to 3D interpreted horizons[J]. First Break,2001,19(2):85−100.
[20] 徐芝纶. 弹性力学(第4版)[M]. 北京:高等教育出版社,2013.
[21] 马妮,印兴耀,宗兆云,等. 基于曲率属性的构造应力预测方法[J]. 石油地球物理勘探,2020,55(3):643−650.
MA Ni,YIN Xingyao,ZONG Zhaoyun,et al. Tectonic stress prediction method based on curvature attribute[J]. Oil Geophysical Prospecting,2020,55(3):643−650.
[22] 楼一珊,张学亮,王语英,等. 地层坍塌压力预测技术在钟市地区的应用[J]. 石油钻探技术,1999,17(3):12−13.
LOU Yishan,ZHANG Xueliang,WANG Yuying,et al. Application of formation caving pressure prediction technology[J]. Petroleum Drilling Techniques,1999,17(3):12−13.
[23] 楼一珊,庄锦江,黄荣樽. 岩石动、静弹性参数相关性的研究及其应用[J]. 江汉石油学院学报,1989,11(2):62−69.
LOU Yishan,ZHUANG Jinjiang,HUANG Rongzun. Study on the interrelation of dynamic and static elastic parameters of rocks and its application[J]. Journal of Jianghan Petroleum Institute,1989,11(2):62−69.
[24] 常闯,李松,汤达祯,等. 基于测井参数的煤储层地应力计算方法研究:以延川南区块为例[J]. 煤田地质与勘探,2023,51(5):23−32.
CHANG Chuang,LI Song,TANG Dazhen,et al. In–situ stress calculation for coal reservoirs based on log parameters:A case study of the southern Yanchuan Block[J]. Coal Geology & Exploration,2023,51(5):23−32.
[25] 边会媛,王飞,张永浩,等. 储层条件下致密砂岩动静态弹性力学参数实验研究[J]. 岩石力学与工程学报,2015,34(增刊1):3045−3054.
BIAN Huiyuan,WANG Fei,ZHANG Yonghao,et al. Experimental study of dynamic and static elastic parameters of tight sandstones under reservoir conditions[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(Sup.1):3045−3054.
[26] 林海宇,熊健,彭妙,等. 陆相页岩储层横观各向同性地应力测井预测:以新疆MH凹陷F组陆相页岩油储层为例[J]. 天然气地球科学,2022,33(10):1712−1721.
LIN Haiyu,XIONG Jian,PENG Miao,et al. Research on in–situ stress logging prediction of transversely isotropic continental shale reservoir:Case study of the F Formation continental shale oil reservoir in MH Sag,Xinjiang[J]. Natural Gas Geoscience,2022,33(10):1712−1721.
[27] 刘之的,韩鸿来,王成旺,等. 鄂尔多斯盆地大宁–吉县区块深部煤层含气饱和度测井计算方法及分布特征[J]. 天然气地球科学,2024,35(2):193−201.
LIU Zhidi,HAN Honglai,WANG Chengwang,et al. Calculation method of gas saturation and distribution characteristics of deep coal seam in Daning–Jixian Block using logging data[J]. Natural Gas Geoscience,2024,35(2):193−201.
[28] 余雄鹰,王越之,李自俊. 声波法计算水平主地应力值[J]. 石油学报,1996,17(3):59−63.
YU Xiongying,WANG Yuezhi,LI Zijun. Calculation of horizontal principal in–situ stress with acoustic wave method[J]. Acta Petrolei Sinica,1996,17(3):59−63.
[29] 杨桂通. 弹塑性力学引论(第2版)[M]. 北京:清华大学出版社,2013.
[30] 赵永强. 成像测井综合分析地应力方向的方法[J]. 石油钻探技术,2009,37(6):39−43.
ZHAO Yongqiang. A method of analyzing crustal stress orientation using imaging logging[J]. Petroleum Drilling Techniques,2009,37(6):39−43.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons