Coal Geology & Exploration
Abstract
Objective and Methods This study aims to reduce the economic cost of sulfoaluminate cement-based grouting materials while also achieving excellent grouting reinforcement effects. To this end, it investigated the variation patterns of the compressive strength, setting time, and fluidity of the ultrafine fly ash (UFA)-ultrafine sulfoaluminate cement (USC) system by incorporating different dosages of silica fume (SF) and nano-silica (NS). Furthermore, the mechanisms behind the hydration reactions of the system were explored. Using multiple distinct testing techniques such as X-ray diffraction (XRD) mineralogy, Fourier transform infrared spectroscopy (FTIR), thermogravimetric-differential thermal analysis (TG-DTA), and scanning electron microscopy (SEM), this study analyzed the phase composition and microstructures of the hydration products. Results and Conclusions The incorporation of SF into the UFA-USC system led to decreased compressive strength and setting time of the system across various ages. As NS was added, the compressive strength of the UFA-USC system at all ages showed an upward trend initially and then decreased, with the optimum NS dosage determined at 2%. As only NS was mixed into USC, the compressive strength of USC at various ages also increased initially and then decreased, with the optimum NS dosage proving to be 3%. In contrast, the setting time of the USC at various ages shortened first and then increased when the NS was added. Microscopically, the incorporation of SF or NS did not change the hydration product types of the USC but enhanced its early hydration. Notably, the incorporation of NS resulted in more compact microstructures of the hydration products, thus improving the compressive strength of the USC. The USC-based grouting materials were applied to floor grouting for water blocking at a coal mine in Shanxi Province. The field tests verified that the materials hold high value in engineering. The results of this study provide a theoretical basis for the application of nanomaterials in grouting engineering. Furthermore, they are of significant practical value in improving the grouting reinforcement technology system used for the surrounding rocks of deep roadways.
Keywords
ultrafine sulfoaluminate cement (USC), ultrafine fly ash (UFA), nano-modification technology, mechanical property, hydration mechanism, grouting for water blocking
DOI
10.12363/issn.1001-1986.25.06.0442
Recommended Citation
LI Xiaolin, WANG Pengfei, GAO Yinghui,
et al.
(2025)
"Influence patterns of nanomaterials on the properties of ultrafine sulfoaluminate cement,"
Coal Geology & Exploration: Vol. 53:
Iss.
10, Article 63.
DOI: 10.12363/issn.1001-1986.25.06.0442
Available at:
https://cge.researchcommons.org/journal/vol53/iss10/63
Reference
[1] 张农,陈红,陈瑶. 千米深井高地压软岩巷道沿空留巷工程案例[J]. 煤炭学报,2015,40(3):494−501.
ZHANG Nong,CHEN Hong,CHEN Yao. An engineering case of gob–side entry retaining in one kilometer–depth soft rock roadway with high ground pressure[J]. Journal of China Coal Society,2015,40(3):494−501.
[2] 孙广京,朱斯陶,姜福兴,等. 深井特厚煤层工作面强烈动压区安全开采技术[J]. 煤炭学报,2015,40(增刊1):12−18.
SUN Guangjing,ZHU Sitao,JIANG Fuxing,et al. Safe mining technology at strong dynamic pressure area in deep extra–thick coal seam[J]. Journal of China Coal Society,2015,40(Sup.1):12−18.
[3] 管学茂,张海波,杨政鹏,等. 高性能无机–有机复合注浆材料研究[J]. 煤炭学报,2020,45(3):902−910.
GUAN Xuemao,ZHANG Haibo,YANG Zhengpeng,et al. Research of high performance inorganic–organic composite grouting materials[J]. Journal of China Coal Society,2020,45(3):902−910.
[4] 徐拴海,邢龙龙,王国强,等. 超细水泥浆液在微裂隙岩体中的注浆试验研究[J]. 中国安全生产科学技术,2014,10(6):96−102.
XU Shuanhai,XING Longlong,WANG Guoqiang,et al. Experimental research on grouting of superfine cement slurry in micro–fissured rock body[J]. Journal of Safety Science and Technology,2014,10(6):96−102.
[5] 李召峰,李术才,刘人太,等. 富水破碎岩体注浆加固材料试验研究与应用[J]. 岩土力学,2016,37(7):1937−1946.
LI Zhaofeng,LI Shucai,LIU Rentai,et al. Development of the grouting material for reinforcing water–rich broken rock masses and its application[J]. Rock and Soil Mechanics,2016,37(7):1937−1946.
[6] DI Hongfeng,LIU Songhui,HAN Kang,et al. Reinforcement of broken coal rock using ultrafine sulfoaluminate cement based grouting materials[J]. Journal of Materials in Civil Engineering,2022,34(6):04022082.
[7] CHEN Qingsheng,YAN Ge,ZHUANG Xinshan,et al. Dynamic characteristics and microstructural study of nano calcium carbonate modified cemented soil under different salt water solutions[J]. Transportation Geotechnics,2022,32:100700.
[8] SUN Jinfeng,XU Zhiqiang,LI Weifeng,et al. Effect of nano–SiO2 on the early hydration of alite–sulphoaluminate cement[J]. Nanomaterials,2017,7(5):102.
[9] MA Baoguo,LI Hainan,MEI Junpeng,et al. Effect of nano–TiO2 addition on the hydration and hardening process of sulphoaluminate cement[J]. Journal of Wuhan University of Technology (Materials Science Edition),2015,30(4):768−773.
[10] WANG Han,ZHAO Piqi,WANG Shoude,et al. Effect of well–dispersed nano–TiO2 on sulphoaluminate cement hydration and its application in photo–degradation[J]. Ceramics–Silikaty,2017,61(4):301−308.
[11] HE Zhen,YANG Huamei,HU Shuguang,et al. Hydration mechanism of silica fume–sulphoaluminate cement[J]. Journal of Wuhan University of Technology (Materials Science Edition),2013,28(6):1128−1133.
[12] MA Baoguo,LI Hainan,MEI Junpeng,et al. Influence of nano–SiO2 addition on properties of sulphoaluminate cement based material[J]. Journal of Wuhan University of Technology (Materials Science Edition),2017,32(1):106−112.
[13] 王朋飞,张明璇,王慧娴,等. 超细固废对超细硫铝酸盐水泥基注浆材料性能的影响[J]. 绿色矿山,2024,2(3):258−272.
WANG Pengfei,ZHANG Mingxuan,WANG Huixian,et al. Effect of ultrafine solid waste on the properties of ultrafine sulphoaluminate cement based grouting materials and its mechanism[J]. Journal of Green Mine,2024,2(3):258−272.
[14] 张明璇,王朋飞,杨涛,等. 聚羧酸减水剂对硫铝酸盐水泥基注浆材料影响[J]. 煤炭科学技术,2025,53(4):348−361.
ZHANG Mingxuan,WANG Pengfei,YANG Tao,et al. Effect of polycarboxylic acid superplasticizer on sulphoaluminate cement based grouting material[J]. Coal Science and Technology,2025,53(4):348−361.
[15] 何香香,梅军鹏,姜天华,等. EVA对硫铝酸盐水泥净浆微观结构和力学性能的影响[J]. 硅酸盐通报,2022,41(8):2628−2636.
HE Xiangxiang,MEI Junpeng,JIANG Tianhua,et al. Effect of EVA on microstructure and mechanical properties of calcium sulfoaluminate cement paste[J]. Bulletin of the Chinese Ceramic Society,2022,41(8):2628−2636.
[16] 张珍杰. 硅烷对硫铝酸盐水泥性能的改性和机理研究[D]. 焦作:河南理工大学,2021.
ZHANG Zhenjie. Study on modification and mechanism of silanes on the performance of calcium sulfoaluminate cement[D]. Jiaozuo:Henan Polytechnic University,2021.
[17] 沈昊. 硫铝酸盐–硅酸盐水泥–掺合料复合胶凝材料水化机理研究[D]. 兰州:西北民族大学,2023.
SHEN Hao. Study on the hydration mechanism of sulphate aluminate–silicate cement–dopant composite cementitious materials[D]. Lanzhou:Northwest Minzu University,2023.
[18] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 混凝土外加剂匀质性试验方法:GB/T 8077—2012[S]. 北京:中国标准出版社,2012.
[19] 马保国,韩磊,李海南,等. 掺合料对硫铝酸盐水泥性能的影响[J]. 新型建筑材料,2014,41(9):19−21.
MA Baoguo,HAN Lei,LI Hainan,et al. Impact of mineral admixture on the performance of sulphate aluminum cement[J]. New Building Materials,2014,41(9):19−21.
[20] 廖国胜,徐路,廖宜顺. 硅灰对硫铝酸盐水泥水化行为的影响机理[J]. 建筑材料学报,2017,20(6):840−845.
LIAO Guosheng,XU Lu,LIAO Yishun. Influence of silica fume on the hydration behavior of calcium sulphoaluminate cement[J]. Journal of Building Materials,2017,20(6):840−845.
[21] 王旭. 掺合料对硫铝酸盐水泥混凝土力学性能影响的研究[D]. 淮南:安徽理工大学,2020.
WANG Xu. Study on mechanical properties of sulphoaluminate cement concrete with admixture[D]. Huainan:Anhui University of Science & Technology,2020.
[22] 桂雨. 硫铝酸盐水泥基材料水化特性与成熟度研究[D]. 武汉:武汉科技大学,2020.
GUI Yu. Study on hydration characteristics and maturity of calcium sulfoaluminate cement–based materials[D]. Wuhan:Wuhan University of Science and Technology,2020.
[23] CHAUNSALI P Y,MONDAL P M. Influence of calcium sulfoaluminate (CSA) cement content on expansion and hydration behavior of various ordinary Portland cement–CSA blends[J]. Journal of the American Ceramic Society,2015,98(8):2617−2624.
[24] 严涵,冉千平,舒鑫,等. 纳米材料优化水泥基材料性能的研究进展[J]. 中国材料进展,2017,36(9):645−652.
YAN Han,RAN Qianping,SHU Xin,et al. Research advances on performance optimization of cementitious materials using nanomaterials[J]. Materials China,2017,36(9):645−652.
[25] 徐迅,卢忠远. 纳米SiO2对水泥基材料密实填充性能的影响[J]. 中国粉体技术,2010,16(5):55−58.
XU Xun,LU Zhongyuan. Effect on packing and filing performance of cement–based materials containing with silicon dioxide nano–particles[J]. China Powder Science and Technology,2010,16(5):55−58.
[26] CHEN Tao,WANG Zhihang,BAI Erlei,et al. Effect of nano admixtures on the engineering properties and microstructure of sulphoaluminate cement mortar at –10°C[J]. Construction and Building Materials,2023,402:133015.
[27] 马保国,梅军鹏,李海南,等. 纳米SiO2对硫铝酸盐水泥水化硬化的影响[J]. 功能材料,2016,47(2):2010−2014.
MA Baoguo,MEI Junpeng,LI Hainan,et al. Effect of nano–SiO2 on hydration and hardening of sulphoaluminate cement[J]. Journal of Functional Materials,2016,47(2):2010−2014.
[28] 苏敦磊. 基于多种固废协同处置技术的高贝利特硫铝酸盐水泥制备与应用基础研究[D]. 青岛:青岛理工大学,2021.
SU Dunlei. Synthesis and application fundamental research of high belite sulphoaluminate cement based on comprehensive disposal of various solid wastes[D]. Qingdao:Qingdao University of Technology,2021.
[29] 姜利豪. 复掺硅灰粉煤灰水泥基注浆材料试验研究及工程应用[D]. 沈阳:沈阳工业大学,2023.
JIANG Lihao. Experimental research and engineering application of polysilica ash and fly ash cement–based grouting materials[D]. Shenyang:Shenyang University of Technology,2023.
[30] 李德栋. 硫铝酸盐水泥的红外光谱研究[J]. 硅酸盐学报,1984,12(1):119−125.
LI Dedong. Infrared spectroscopic study of sulfoaluminate cement[J]. Journal of the Chinese Ceramic Society,1984,12(1):119−125.
[31] 李海艳,刘小星,司鹤洋,等. 纳米类水滑石对硫铝酸盐水泥熟料水化硬化规律的影响[J]. 硅酸盐学报,2018,46(7):887−894.
LI Haiyan,LIU Xiaoxing,SI Heyang,et al. Effect of nano–layered double hydroxides on hydration and hardening of calcium sulphoaluminate cement clinker[J]. Journal of the Chinese Ceramic Society,2018,46(7):887−894.
[32] 王燕峰. 碳酸钙对硫铝酸盐水泥基注浆材料性能影响规律研究[D]. 焦作:河南理工大学,2021.
WANG Yanfeng. Study on the influence of calcium carbonate on the performance of sulphoaluminate cement–based grouting materials[D]. Jiaozuo:Henan Polytechnic University,2021.
[33] TREZZA M A,LAVAT A E. Analysis of the system 3CaO·Al2O3–CaSO4·2H2O–CaCO3–H2O by FT–IR spectroscopy[J]. Cement and Concrete Research,2001,31(6):869−872.
[34] GAO Danying,YANG Lin,LI Ying. In situ monitoring the deterioration processes of hardened cement pastes and mortars exposed to continuous heating[J]. Construction and Building Materials,2018,192:515−525.
[35] 史才军,元强. 水泥基材料测试分析方法[M]. 北京:中国建筑工业出版社,2018.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons