Coal Geology & Exploration
Abstract
Objective To accelerate ecological protection and high-quality development in the Yellow River basin, the concept of “conductivity, storage, and utilization” has been proposed to achieve the mine water storage and protection by transforming goafs into underground reservoirs and utilizing waterproof concrete dams. However, under the action of long-term water immersion and mining activity, the interfaces of composite concrete dam structures might undergo strength degradation, leading to hidden hazards. Methods By incorporating 0.5% and 1.0% nano-SiO2, -Al2O3, and -TiO2, this study prepared specimens with one vertical interface each that comprised double semi-cylinders through casting twice. Then, through non-metallic ultrasonic detection and uniaxial compression experiments, this study investigated the variations in the interface stability and strength of nano-modified concrete specimens with interfaces after water immersion. Results and Conclusions The failure of the specimens with vertical interfaces exhibited two stages: interface rupture and complete failure. This finding reveals the staged failure mechanisms of the specimens with vertical interfaces under compression. After 14 days of water immersion, normal specimens showed average decreases of 19.15% and 15.11% in complete failure strength and interface rupture strength, respectively. This result indicates that the water immersion environment produced a deteriorating effect on both the complete failure strength and interface rupture strength of the specimens. The analysis of the failure characteristics of the specimens reveals that only the unimmersed specimens mixed with 0.5% nano-TiO2 exhibited shear failure through the interfaces, while the remaining specimens showed splitting failure parallel to the interfaces. This finding demonstrates that the incorporation of 0.5% nano-TiO2 could enhance the resistance to shear of the interfaces. However, such enhancement was weakened by water immersion. Compared to normal specimens with vertical interfaces, those mixed with 0.5% nano-TiO2 presented an increase of 35.23% in interface rupture strength, suggesting a significant enhancement in the interfaces. In contrast, the specimens incorporating 0.5% nano-SiO2 exhibited an increase of 37.14% in complete failure strength, implying a generally high performance in matrix enhancement. The specimens incorporating 0.5% nano-SiO2 showed the greatest improvement in elastic modulus and deformation modulus, which increased by 30.34% and 39.25%, respectively. The results of this study hold significant scientific value and provide essential engineering guidance for the long-term safe, stable operation of underground water reservoirs and related engineering facilities.
Keywords
coal mine, underground reservoir, vertical interface, water immersion-induced weakness, nanomaterial, mechanical property, enhancement pattern
DOI
10.12363/issn.1001-1986.25.04.0229
Recommended Citation
LI Yijia, HAO Xianjie, CHEN Yuguang,
et al.
(2025)
"Water immersion-induced damage mechanisms and enhancement via nano-modification for artificial dam specimens with vertical interfaces,"
Coal Geology & Exploration: Vol. 53:
Iss.
10, Article 62.
DOI: 10.12363/issn.1001-1986.25.04.0229
Available at:
https://cge.researchcommons.org/journal/vol53/iss10/62
Reference
[1] 申艳军,杨博涵,王双明,等. 黄河几字弯区煤炭基地地质灾害与生态环境典型特征[J]. 煤田地质与勘探,2022,50(6):104−117.
SHEN Yanjun,YANG Bohan,WANG Shuangming,et al. Typical characteristics of geological hazards and ecological environment of coal base in the bends area of the Yellow River[J]. Coal Geology & Exploration,2022,50(6):104−117.
[2] 王丽,杜松,文扬. 煤矿矿井水综合利用存在问题及原因分析:以黄河流域煤矿为例[J]. 中国国土资源经济,2025,38(7):23−29.
WANG Li,DU Song,WEN Yang. Analysis on the problems and causes of comprehensive utilization of coal mine pit water:A case study of coal mines in the Yellow River Basin[J]. Natural Resource Economics of China,2025,38(7):23−29.
[3] 顾大钊,曹志国,李井峰,等. 煤矿地下水库技术原创试验平台体系研制及应用[J]. 煤炭学报,2024,49(1):100−113.
GU Dazhao,CAO Zhiguo,LI Jingfeng,et al. Original experimental platform system and application of underground coal mine reservoirs[J]. Journal of China Coal Society,2024,49(1):100−113.
[4] 孙亚军,陈歌,徐智敏,等. 我国煤矿区水环境现状及矿井水处理利用研究进展[J]. 煤炭学报,2020,45(1):304−316.
SUN Yajun,CHEN Ge,XU Zhimin,et al. Research progress of water environment,treatment and utilization in coal mining areas of China[J]. Journal of China Coal Society,2020,45(1):304−316.
[5] 谢和平,侯正猛,高峰,等. 煤矿井下抽水蓄能发电新技术:原理、现状及展望[J]. 煤炭学报,2015,40(5):965−972.
XIE Heping,HOU Zhengmeng,GAO Feng,et al. A new technology of pumped–storage power in underground coal mine:Principles,present situation and future[J]. Journal of China Coal Society,2015,40(5):965−972.
[6] 王方田,罗文,张村,等. 黄河流域煤矿地下水库坝体稳定性控制与净水关键技术研究及示范[R]. 内蒙古:国能神东煤炭集团有限责任公司,2021.
[7] 姜琳婧,赵会杰,赵怡晴,等. 层理煤岩浸水前后力学性质研究[J]. 煤炭科学技术,2023,51(10):97−108.
JIANG Linjing,ZHAO Huijie,ZHAO Yiqing,et al. Study on mechanical properties of coal before and after flooding considering bedding direction[J]. Coal Science and Technology,2023,51(10):97−108.
[8] 樊帆,刘臣毅,徐建生. 煤矿地下水库人工坝体稳定性分析[J]. 煤炭工程,2020,52(11):120−125.
FAN Fan,LIU Chenyi,XU Jiansheng. Stability analysis of artificial dam body in coal mine groundwater reservoir[J]. Coal Engineering,2020,52(11):120−125.
[9] 陈阳. 煤矿地下水库挡水坝体防渗型式与渗控效果研究[D]. 北京:清华大学,2015.
CHEN Yang. Research on the seepage prevention and seepage control effect of coal mine underground reservoir water retaining dam[D]. Beijing:Tsinghua University,2015.
[10] 郝宪杰,魏英楠,杨科,等. 煤储集层起裂强度和损伤强度的各向异性特征[J]. 石油勘探与开发,2021,48(1):211−221.
HAO Xianjie,WEI Yingnan,YANG Ke,et al. Anisotropy of crack initiation strength and damage strength of coal reservoirs[J]. Petroleum Exploration and Development,2021,48(1):211−221.
[11] 陈绍杰,李法鑫,尹大伟,等. 不同高比灰岩–煤组合体变形破坏特征实验研究[J]. 中南大学学报(自然科学版),2023,54(6):2459−2472.
CHEN Shaojie,LI Faxin,YIN Dawei,et al. Experimental study on deformation failure characteristics of limestone–coal composite with different rock–coal height ratios[J]. Journal of Central South University (Science and Technology),2023,54(6):2459−2472.
[12] 李春元. 深部原生煤岩组合体三轴压缩破裂特征与失稳模式[J]. 煤田地质与勘探,2024,52(8):111−123.
LI Chunyuan. Fracturing characteristics and instability modes of deep primary coal–rock combinations under triaxial compression[J]. Coal Geology & Exploration,2024,52(8):111−123.
[13] 孔凯,尹大伟,张虎,等. 岩–煤组合体试样变形场与能量演化特征试验研究[J]. 山东科技大学学报(自然科学版),2022,41(5):30−39.
KONG Kai,YIN Dawei,ZHANG Hu,et al. Experimental study on deformation field and energy evolution characteristics of rock–coal composite samples[J]. Journal of Shandong University of Science and Technology (Natural Science),2022,41(5):30−39.
[14] 尹大伟,丁屹松,汪锋,等. 压力水浸泡下煤岩抗拉特性试验研究[J]. 岩石力学与工程学报,2023,42(增刊1):3178−3191.
YIN Dawei,DING Yisong,WANG Feng,et al. Experimental study on tensile properties and deterioration mechanism of coal samples under pressure water immersion[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(Sup.1):3178−3191.
[15] 张凯,刘舒予,曹志国,等. 煤矿地下水库水岩作用时间规律模拟试验研究[J]. 煤田地质与勘探,2023,51(3):54−64.
ZHANG Kai,LIU Shuyu,CAO Zhiguo,et al. Study on the time law of water–rock interaction in coal mine groundwater reservoir[J]. Coal Geology & Exploration,2023,51(3):54−64.
[16] 房满义,李雪妍,张根,等. 煤矿地下水库水岩作用机理研究:以大柳塔煤矿为例[J]. 煤炭科学技术,2022,50(11):236−242.
FANG Manyi,LI Xueyan,ZHANG Gen,et al. Research on water–rock interaction mechanism in coal mine underground reservoir:Taking Daliuta Coal Mine as an example[J]. Coal Science and Technology,2022,50(11):236−242.
[17] 王伯昕,刘佳奇,王清,等. 冻融循环条件下粉质黏土–混凝土界面细观损伤及宏观剪切性能研究[J]. 岩石力学与工程学报,2023,42(增刊1):3792−3800.
WANG Boxin,LIU Jiaqi,WANG Qing,et al. Study of meso–damage and macroscopic shear performance of silty clay–concrete interface under freeze–thaw cycles[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(Sup.1):3792−3800.
[18] 唐丽云,黄涛,汪卫兵,等. 冻融循环下土石混合体–混凝土界面剪切特性及孔隙结构演化特征试验研究[J]. 中南大学学报(自然科学版),2023,54(5):1954−1969.
TANG Liyun,HUANG Tao,WANG Weibing,et al. Experimental study on shear characteristics and pore structure evolution characteristics of soil–rock mixture–concrete interface during freeze–thaw cycles[J]. Journal of Central South University (Science and Technology),2023,54(5):1954−1969.
[19] 王路军,曹志国,程建超,等. 煤矿地下水库坝基层间岩体破坏及突渗力学模型[J]. 煤炭学报,2023,48(3):1192−1208.
WANG Lujun,CAO Zhiguo,CHENG Jianchao,et al. Failure analysis of rock strata between upper and lower coals under underground reservoir in coal mine and its critical percolation model of jumping permeability[J]. Journal of China Coal Society,2023,48(3):1192−1208.
[20] 王方田,张村,汤天阔,等. 循环水浸作用下煤体孔隙与损伤演化机制实验研究[J]. 矿业科学学报,2024,9(4):608−618.
WANG Fangtian,ZHANG Cun,TANG Tiankuo,et al. Pore and strength damage evolution mechanism of coal induced by the circulating water immersion effect[J]. Journal of Mining Science and Technology,2024,9(4):608−618.
[21] ZHANG Peng,WAN Jinyi,WANG Kejin,et al. Influence of nano–SiO2 on properties of fresh and hardened high performance concrete:A state–of–the–art review[J]. Construction and Building Materials,2017,148:648−658.
[22] ARDALAN R B,JAMSHIDI N,ARABAMERI H,et al. Enhancing the permeability and abrasion resistance of concrete using colloidal nano–SiO2 oxide and spraying nanosilicon practices[J]. Construction and Building Materials,2017,146:128−135.
[23] 张珅侨,俞家珺,李浩雄,等. 纳米SiO2对再生骨料混凝土性能及微观结构的影响[J/OL]. 工程科学与技术,2024:1–12 [2024-09-30]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=SCLH20240925002&dbname=CJFD&dbcode=CJFQ.
ZHANG Shenqiao,YU Jiajun,LI Haoxiong,et al. Effect of nano–SiO2 on performances and microstructure of recycled aggregate concrete[J/OL]. Advanced Engineering Sciences,2024:1–12 [2024-09-30]. https://kns.cnki.net/KCMS/detail/detail. aspx?filename=SCLH20240925002&dbname=CJFD&dbcode=CJFQ.
[24] REZANIA M,PANAHANDEH M,RAZAVI N,et al. Experimental study of the simultaneous effect of nano–silica and nano–carbon black on permeability and mechanical properties of the concrete[J]. Theoretical and Applied Fracture Mechanics,2019,104:102391.
[25] GUO Siyao,LUO Huihua,TAN Zhe,et al. Impermeability and interfacial bonding strength of TiO2–graphene modified epoxy resin coated OPC concrete[J]. Progress in Organic Coatings,2021,151:106029.
[26] LI Yue,WANG Hailong,WEI Lisi,et al. The impact of NaOH on the micro–mechanical properties of the interface transition zone in low–carbon concrete[J]. Materials,2024,17(1):258.
[27] 王乾峰,刘云贺,彭刚. 水压力环境中混凝土的含水量及其对力学性能的影响[J]. 水利学报,2017,48(2):193−202.
WANG Qianfeng,LIU Yunhe,PENG Gang. Water content in concrete under water pressure environment and the effect on its mechanical properties[J]. Journal of Hydraulic Engineering,2017,48(2):193−202.
[28] 夏意. 高水压对混凝土的损伤机理及抑制方法研究[D]. 徐州:中国矿业大学,2022.
XIA Yi. Study on the mechanism and restraining method of concrete damage caused by high water pressure[D]. Xuzhou:China University of Mining and Technology,2022.
[29] 李婕,孙煦东,何文福. 不同粒径纳米二氧化硅混凝土宏微观性能研究[J]. 混凝土,2022(2):90−93.
LI Jie,SUN Xudong,HE Wenfu. Research on the macro and micro performance of concrete under the action of different nano SiO2 particle size[J]. Concrete,2022(2):90−93.
[30] 蒙绍强. 纳米材料对水泥水化影响机理的研究[D]. 广州:广州大学,2022.
MENG Shaoqiang. Study on the effect of nanomaterials on cement hydration[D]. Guangzhou:Guangzhou University,2022.
[31] 张京波. 纳米材料对硅酸三钙水化过程的影响及机理研究[D]. 济南:济南大学,2019.
ZHANG Jingbo. Effect and mechanism of nano–materials on hydration properties of tricalcium silicate[D]. Jinan:University of Jinan,2019.
[32] 刘爽,赵立革,李雨洋,等. 水泥基材料无机纳米改性的研究进展[J]. 功能材料,2024,55(6):6069−6078.
LIU Shuang,ZHAO Lige,LI Yuyang,et al. Research progress on inorganic nano–modification of cementitious materials[J]. Journal of Functional Materials,2024,55(6):6069−6078.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons