Coal Geology & Exploration
Abstract
Background The weathered bedrock aquifer represents a major water-filled aquifer encountered during coal mining in the Jurassic coalfield in northern Shaanxi Province. Therefore, evaluating the water yield property of the weathered bedrock aquifer is the key to the prevention and control of water hazards in coal seam roofs. Methods This study investigated panel 12 of the Caojiatan Coal Mine, Shaanxi Province. Analysis of the stratigraphic and lithological structure types of the overburden of coal seam 2–2 identified the weathered bedrock as the primary overlying water-bearing aquifer of the coal seam. Using net-to-gross (NTG) ratio, sandstone thickness, weathering influence index, burial depth of weathered bedrock, specific yield, permeability coefficient, rock quality designation (RQD), and apparent resistivity as evaluation indicators and based on the coupling of analytic hierarchy process (AHP), coefficient of variation (CV), and grey relational analysis (GRA), this study constructed a comprehensive AHP-CV-GRA evaluation model for the water yield property of the weathered bedrock aquifer. By calculating the weights and performing spatial overlay analysis for these indicators, this study predicted the zoning of the water yield property of the weathered bedrock aquifer. Results and Conclusions The water yield property of coal seam 2–2 can be categorized into three types: strong, moderate, and weak. The detection results of the anomaly areas of water yield property obtained using the transient electromagnetic method demonstrated that most of zones with strong water yield property in the study area corresponded to the low-resistance anomaly areas near the bottom boundary of the weathered bedrock. To further validate the evaluation results obtained using the AHP-CV-GRA model more accurately, the underground drainage volumes of mining face 122104 were adopted for validation. The results indicated that zones with large drainage volume featured strong water yield property, revealing a good agreement between the evaluation results and the actual conditions. Therefore, the proposed AHP-CV-GRA method enables the scientifically robust elevation of the water yield property of aquifers.
Keywords
medium-deep coal seam, structure of the overburden, weathered bedrock aquifer, zoning of water yield property, analytic hierarchy process (AHP), coefficient of variation (CV), grey relational analysis (GRA), northern Shaanxi
DOI
10.12363/issn.1001-1986.25.05.0385
Recommended Citation
WANG Lu, HUA Zhaolai, HUANG Hao,
et al.
(2025)
"Structural characteristics of the overburden and water yield property of weathered bedrock aquifer in a representative medium-deep coal seam,"
Coal Geology & Exploration: Vol. 53:
Iss.
10, Article 54.
DOI: 10.12363/issn.1001-1986.25.05.0385
Available at:
https://cge.researchcommons.org/journal/vol53/iss10/54
Reference
[1] 张辉,吕彪,马爱军,等. 煤层顶板含水岩性层划分与富水性评价方法[J]. 煤炭技术,2024,43(3):203−207.
ZHANG Hui,LYU Biao,MA Aijun,et al. Stratigraphic division of water–bearing lithological layer and evaluation method of water richness of coal seam roof[J]. Coal Technology,2024,43(3):203−207.
[2] 代革联,高幸,姬中奎,等. 组合赋权法在含水层富水性评价中的应用[J]. 煤炭技术,2022,41(11):82−86.
DAI Gelian,GAO Xing,JI Zhongkui,et al. Application of combined weighting method in evaluation of water richness of aquifer[J]. Coal Technology,2022,41(11):82−86.
[3] 杨磊,雷方超,侯恩科,等. 含水层富水性分区及工作面疏放水后涌水量分段预测[J]. 煤田地质与勘探,2023,51(10):114−123.
YANG Lei,LEI Fangchao,HOU Enke,et al. Zoned prediction of water inflow after dewatering of working face based on water richness zoning of aquifer[J]. Coal Geology & Exploration,2023,51(10):114−123.
[4] 周全超,张洪清,焦扬,等. 基于组合赋权法的煤层顶板突水危险性评价[J]. 科学技术与工程,2022,22(9):3497−3503.
ZHOU Quanchao,ZHANG Hongqing,JIAO Yang,et al. Evaluation of the risk of water inrush from coal roof based on combination weighting method[J]. Science Technology and Engineering,2022,22(9):3497−3503.
[5] 许珂,张维,申建军,等. 灰色理论在裂隙含水层富水性评价中的应用[J]. 辽宁工程技术大学学报(自然科学版),2016,35(8):816−820.
XU Ke,ZHANG Wei,SHEN Jianjun,et al. Fissured aquifer water yield capacity evaluation based on fractal dimension and weighted grey relational degree theory[J]. Journal of Liaoning Technical University (Natural Science),2016,35(8):816−820.
[6] 葛如涛,陈陆望,王迎新,等. 基于改进AHP法和CRITIC法耦合赋权的松散承压含水层富水性评价[J]. 合肥工业大学学报(自然科学版),2023,46(4):519−528.
GE Rutao,CHEN Luwang,WANG Yingxin,et al. Water abundance assessment on unconsolidated confined aquifer based on the coupling of improved AHP and CRITIC[J]. Journal of Hefei University of Technology (Natural Science),2023,46(4):519−528.
[7] 白阳,牛超,李钒,等. 基于FAHP–变异系数法的风化基岩含水层富水性评价[J]. 煤矿安全,2023,54(8):143−149.
BAI Yang,NIU Chao,LI Fan,et al. Water abundance evaluation of weathered bedrock aquifers based on FAHP and coefficient of variance method[J]. Safety in Coal Mines,2023,54(8):143−149.
[8] 胡东祥,田波,吕祥海,等. 基于距离函数组合赋权–云模型的含水层富水性评价[J]. 矿业安全与环保,2024,51(6):147−153.
HU Dongxiang,TIAN Bo,LYU Xianghai,et al. Aquifer water abundance evaluation based on distance function combination weighting–cloud model[J]. Mining Safety & Environmental Protection,2024,51(6):147−153.
[9] 陈勇,范钢伟,殷聪,等. 基于改进AHP–熵权法耦合的淋涌水巷道顶板富水性评价与应用[J]. 煤炭工程,2023,55(12):141−146.
CHEN Yong,FAN Gangwei,YIN Cong,et al. Evaluation of roof water richness of water–drenching roadway based on improved AHP–entropy weight coupling[J]. Coal Engineering,2023,55(12):141−146.
[10] 杨磊,包康光,侯恩科,等. 基于主客观组合赋权的TOPSIS–RSR风化基岩含水层富水性评价[J/OL]. 煤炭科学技术,2024:1–11 [2024-10-16]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=MTKJ20241015005&dbname=CJFD&dbcode=CJFQ.
YANG Lei,BAO Kangguang,HOU Enke,et al. Evaluation of water richness of weathered bedrock aquifers based on subjective and objective combination of TOPSIS–RSR[J/OL]. Coal Science and Technology,2024:1–11 [2024-10-16]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=MTKJ20241015005&dbname=CJFD&dbcode=CJFQ.
[11] 侯恩科,杨斯亮,文强,等. 柠条塔井田南翼隐伏火烧区特征及富水性评价[J]. 煤矿安全,2022,53(11):191−199.
HOU Enke,YANG Siliang,WEN Qiang,et al. Characteristics and water abundance evaluation of concealed burning area in southern of Ningtiaota Coal Mine[J]. Safety in Coal Mines,2022,53(11):191−199.
[12] 程久龙,王慧杰,徐忠忠,等. 基于全卷积神经网络的钻孔瞬变电磁法岩层富水性预测研究[J]. 煤田地质与勘探,2023,51(1):289−297.
CHENG Jiulong,WANG Huijie,XU Zhongzhong,et al. Research on aquifer water abundance evaluation by borehole transient electromagnetic method based on FCNN[J]. Coal Geology & Exploration,2023,51(1):289−297.
[13] 黄忠正,莫仕林,邹冠贵,等. 利用衰减特征预测鄂尔多斯盆地Ycw煤矿直罗组砂岩富水性[J]. 科学技术与工程,2023,23(4):1406−1413.
HUANG Zhongzheng,MO Shilin,ZOU Guangui,et al. Using attenuation characteristics to predict the sandstone water content of Zhiluo Formation in Ycw Coal Mine,Ordos Basin[J]. Science Technology and Engineering,2023,23(4):1406−1413.
[14] 吕振猛,孟凡贞,吕文茂,等. 改进的富水性预测评价方法[J]. 煤炭技术,2023,42(9):152−155.
LYU Zhenmeng,MENG Fanzhen,LYU Wenmao,et al. Improved method for predicting and evaluating water yield property[J]. Coal Technology,2023,42(9):152−155.
[15] 师素珍,石贵飞,刘最亮,等. 基于多变量LSTM网络的K2灰岩富水区预测:以阳泉泊里矿区为例[J]. 煤田地质与勘探,2023,51(5):155−163.
SHI Suzhen,SHI Guifei,LIU Zuiliang,et al. Predicting the water–yield properties of K2 limestones based on multivariate LSTM neural network:A case study of the Poli mining area in Yangquan[J]. Coal Geology & Exploration,2023,51(5):155−163.
[16] 刘超,夏冰冰,白坤,等. 基于微震监测的中深埋煤层导水裂缝带发育规律研究[J]. 中国煤炭,2022,48(12):60−67.
LIU Chao,XIA Bingbing,BAI Kun,et al. Research on the development law of water–conducting fracture zone in medium–deep buried coal seam based on micro–seismic monitoring[J]. China Coal,2022,48(12):60−67.
[17] 马莲净. 顶板巨厚砂岩含水层水文地质特征与水害防治技术研究:以麦垛山煤矿为例[D]. 西安:长安大学,2020.
MA Lianjing. Study on hydrogeological characteristics and water hazard control technology of roof thick sandstone aquifer:A case study of Maiduoshan Coal Mine[D]. Xi’an:Chang’an University,2020.
[18] 方刚. 巴拉素井田煤层富水性分区及水量预测[J]. 煤矿安全,2024,55(1):200−207.
FANG Gang. Water–rich zoning and water quantity prediction of coal seam in Balasu Mine Field[J]. Safety in Coal Mines,2024,55(1):200−207.
[19] 王孝坤,郑禄林,兰红,等. 基于LDA–RBF及综合赋权法的顶板突水危险性评价[J]. 煤矿安全,2024,55(4):187−196.
WANG Xiaokun,ZHENG Lulin,LAN Hong,et al. Roof water inrush risk assessment based on LDA–RBF and comprehensive weighting method[J]. Safety in Coal Mines,2024,55(4):187−196.
[20] 唐李斌,吴基文,毕尧山,等. 基于AHP–熵权法耦合的含水层富水性评价研究[J]. 中国矿业,2020,29(12):147−152.
TANG Libin,WU Jiwen,BI Yaoshan,et al. Evaluation of aquifer water abundance based on AHP–entropy weight method[J]. China Mining Magazine,2020,29(12):147−152.
[21] 周全超,顾雷雨,殷裁云,等. 基于AHP–CRITIC–TOPSIS法的含水层富水性评价模型[J]. 人民黄河,2022,44(增刊2):116−118.
[22] 冯书顺,武强. 基于AHP–变异系数法综合赋权的含水层富水性研究[J]. 煤炭工程,2016,48(11):138−140.
FENG Shushun,WU Qiang. Research on water–richness of aquifer using comprehensive weight method based on AHP and variation coefficient[J]. Coal Engineering,2016,48(11):138−140.
[23] 代革联,高幸,姬中奎. 侏罗纪煤田延安组煤层顶板含水层富水性评价[J]. 能源与环保,2023,45(3):86−92.
DAI Gelian,GAO Xing,JI Zhongkui. Water–rich evaluation of aquifers on the roof of Yan’an Formation coal seam in Jurassic coalfield[J]. China Energy and Environmental Protection,2023,45(3):86−92.
[24] 梁戈龙,万宝,冯来宏,等. 基于组合赋权法的洛河组含水层富水性评价[J]. 煤炭科学技术,2024,52(增刊1):201−210.
LIANG Gelong,WAN Bao,FENG Laihong,et al. Water–richness evaluation of Luohe Formation aquifer above coal seam based on combination weighting method[J]. Coal Science and Technology,2024,52(Sup.1):201−210.
[25] 庞春燕. 金鸡滩煤矿基岩风化带含水层富水性评价[D]. 徐州:中国矿业大学,2023.
PANG Chunyan. Evaluation on the water abundance of aquifer in weathered zone of basement of Jinjitan Coal Mine[D]. Xuzhou:China University of Mining and Technology,2023.
[26] 郭启琛,李文平,郭太刚. 基于FAHP–GRA法的风积沙覆盖风化带潜水富水性评价[J]. 煤矿安全,2018,49(12):35−40.
GUO Qichen,LI Wenping,GUO Taigang. Evaluation of phreatic water abundance in weathering zone covered by eolian sand based on FAHP–GRA[J]. Safety in Coal Mines,2018,49(12):35−40.
[27] 薛森,李文平,郭启琛,等. 基于FAHP–GRA评价方法的顶板承压含水层富水性预测研究[J]. 金属矿山,2018(4):168−172.
XUE Sen,LI Wenping,GUO Qichen,et al. Prediction of water abundance of the roof confined aquifer strata based on FAHP–GRA evaluation method[J]. Metal Mine,2018(4):168−172.
[28] 姜万明. 榆神矿区杭来湾煤矿突水危险性预测研究[D]. 徐州:中国矿业大学,2022.
JIANG Wanming. Study water inrush risk of Hanglaiwan Coal Mine in Yushen mining area[D]. Xuzhou:China University of Mining and Technology,2022.
[29] 曾一凡,李哲,宫厚建,等. 顶板风化基岩含水层富水特征与涌(突)水危险性预测[J]. 煤炭工程,2018,50(2):100−104.
ZENG Yifan,LI Zhe,GONG Houjian,et al. Water abundance characteristics in aquifer of weathered roof bedrock and prediction on water inrush risk[J]. Coal Engineering,2018,50(2):100−104.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons