Coal Geology & Exploration
Abstract
Background With the advancement in smart city construction in China, the development and utilization of urban underground space have become a focal point. Geophysical methods, as a crucial technical means for underground geological structure exploration, face new challenges when applied to complex exploration environments in urban areas. Objectives and Methods To address issues in underground space exploration in the coastal area of Qingdao, this study investigated the reclamation area along the eastern coast of the Jiaozhou Bay. Using a detection technique that combined the transient electromagnetic method (TEM) using a conical source and high-density resistivity method, this study constructed a 3D resistivity model through multi-source data fusion. This model revealed the stratigraphic structures and the extent of fracture zones within the study area, demonstrating the technical advantages of the novel TEM method with a conical source when applied to complex urban environments. Results and Conclusions A three-layer electrical structure was revealed in the study area: an artificial fill layer, the Quaternary sedimentary layer, and bedrock. A clear bottom interface was observed in the artificial fill layer. Data processing and geological interpretation contributed to the successful identification of unfavorable geological bodies such as water-rich anomalous zones and structurally fractured zones, with the former exhibiting laterally continuous resistivity variation bands and the latter characterized by dislocated and concave contours. The varying degrees of bedrock weathering influenced the developmental degrees of faults and fracture zones, especially near the Cangkou fault. The established integrated geophysical exploration system can effectively identify the spatial distribution of strata and the characteristics of geological structures, providing a new technical pathway for achieving “transparent” urban underground space. The results of this study offer a critical geological basis for engineering applications such as metro tunnel siting and underground pipeline network planning.
Keywords
geological structure, conical source, transient electromagnetic (TEM) method, reclamation area, underground space
DOI
10.12363/issn.1001-1986.25.03.0166
Recommended Citation
YU Peng, ZHAO Mingyue, YANG Haiyan,
et al.
(2025)
"Building and geological interpretation of a 3D resistivity model for the reclamation area of the Jiaozhou Bay,"
Coal Geology & Exploration: Vol. 53:
Iss.
10, Article 43.
DOI: 10.12363/issn.1001-1986.25.03.0166
Available at:
https://cge.researchcommons.org/journal/vol53/iss10/43
Reference
[1] 滕吉文,司芗,刘少华. 当代新型智慧城市属性、理念、构筑与大数据[J]. 科学技术与工程,2019,19(36):1−20.
TENG Jiwen,SI Xiang,LIU Shaohua. Contemporary new smart city attributes,ideas,construction and Big data[J]. Science Technology and Engineering,2019,19(36):1−20.
[2] 曹创华,康方平,魏方辉,等. 高密度电阻率法逐级反演与实践:以湖南省常德市鼎城区某地质剖面为例[J]. 地球物理学进展,2019,34(6):2398−2405.
CAO Chuanghua,KANG Fangping,WEI Fanghui,et al. Exploration and practice of step–by–step inversion of high–density resistivity method:Taking a geological section of Changde Dingcheng development zone as an example[J]. Progress in Geophysics,2019,34(6):2398−2405.
[3] 陈实,屈栓柱,李延清,等. 基于微动技术的综合探测体系在乌鲁木齐城市地下空间精细化探测中的应用研究[J]. 地球物理学进展,2023,38(2):779−789.
CHEN Shi,QU Shuanzhu,LI Yanqing,et al. Application of integrated exploration system based on microtremor technology in fine exploration of urban underground space at $ \ddot{\mathrm{U}} $rümqi[J]. Progress in Geophysics,2023,38(2):779−789.
[4] 董杰,孙萍,张鹏,等. 青岛市地下空间开发建设:进展与展望[J]. 华东地质,2024,45(3):264−280.
DONG Jie,SUN Ping,ZHANG Peng,et al. The progress and prospects of underground space development and construction in Qingdao[J]. East China Geology,2024,45(3):264−280.
[5] 李华,王东辉,张伟,等. 地球物理探测技术在成都市浅表地质结构调查中的应用研究[J]. 中国地质,2022,49(5):1438−1457.
LI Hua,WANG Donghui,ZHANG Wei,et al. Application research of geophysical exploration technology in the investigation of shallow geological structure in Chengdu[J]. Geology in China,2022,49(5):1438−1457.
[6] 贾同福,尹志勇,汤洪志. 高密度电阻率法在岩溶探测中的应用[J]. 东华理工大学学报(自然科学版),2011,34(1):94−96.
JIA Tongfu,YIN Zhiyong,TANG Hongzhi. Application of high density resistivity method to karst exploration[J]. Journal of East China Institute of Technology (Natural Science),2011,34(1):94−96.
[7] 杨歧焱,尤惠川,邸龙. 超浅层地震勘探在青岛王哥庄断裂探测中的应用[J]. 震灾防御技术,2018,13(2):284−292.
YANG Qiyan,YOU Huichuan,DI Long. The application of ultra shallow seismic survey on Wanggezhuang fault in Qingdao[J]. Technology for Earthquake Disaster Prevention,2018,13(2):284−292.
[8] 王明常,于海滨,曾昭发,等. 基于多源遥感数据的城市道路坍塌易发性预测[J]. 吉林大学学报(地球科学版),2025,55(3):1028−1038.
WANG Mingchang,YU Haibin,ZENG Zhaofa,et al. Prediction of urban road collapse susceptibility based on multi-source remote sensing data[J]. Journal of Jilin University (Earth Science Edition),2025,55(3):1028−1038.
[9] 李万伦,刘素芳,田黔宁,等. 城市地球物理学综述[J]. 地球物理学进展,2018,33(5):2134−2140.
LI Wanlun,LIU Sufang,TIAN Qianning,et al. Reviews in urban geophysics[J]. Progress in Geophysics,2018,33(5):2134−2140.
[10] LI Wenhan,LU Kailiang,LI He,et al. New multi–resolution and multi–scale electromagnetic detection methods for urban underground spaces[J]. Journal of Applied Geophysics,2018,159:742−753.
[11] 李文翰,刘斌,李术才,等. 基于高性能瞬变电磁辐射源的城市地下空间多分辨成像方法研究[J]. 地球物理学报,2020,63(12):4553−4564.
LI Wenhan,LIU Bin,LI Shucai,et al. Study on multi–resolution imaging method of urban underground space based on high performance transient electromagnetic source[J]. Chinese Journal of Geophysics,2020,63(12):4553−4564.
[12] 何军,刘磊,黎清华,等. 隐伏岩溶区地下空间探测技术方法研究:以武汉市为例[J]. 水文地质工程地质,2020,47(6):47−56.
HE Jun,LIU Lei,LI Qinghua,et al. Techniques for detecting underground space in hidden karst region:Taking Wuhan as an example[J]. Hydrogeology & Engineering Geology,2020,47(6):47−56.
[13] CHEN Jian,JIA Wenfeng,ZHANG Yang,et al. Integrated TEM and GPR data interpretation for high–resolution measurement of urban underground space[J]. IEEE Transactions on Instrumentation and Measurement,2022,71:5004409.
[14] 祁民,张宝林,梁光河. 高密度电法的三维数据场可视化[J]. 地球物理学进展,2006,21(3):981−986.
QI Min,ZHANG Baolin,LIANG Guanghe. The visualization of three dimension data field sof high–density electrical technique[J]. Progress in Geophysics,2006,21(3):981−986.
[15] 花杰,邢廷炎,芮小平. CSAMT数据三维可视化的方法[J]. 地球物理学进展,2012,27(4):1743−1753.
HUA Jie,XING Tingyan,RUI Xiaoping. The 3D–visualization methods for CSAMT data[J]. Progress in Geophysics,2012,27(4):1743−1753.
[16] 陈康,李世峰,张政杰,等. 高密度电法勘探数据三维处理技术及城市勘察中的应用[J]. 工程地质学报,2015,23(1):170−177.
CHEN Kang,LI Shifeng,ZHANG Zhengjie,et al. 3–D processing technology of high density resistivity data and application to urban ground investigation[J]. Journal of Engineering Geology,2015,23(1):170−177.
[17] 罗志波,刘文强,曹朋军,等. 高密度电阻率法在山东莱州小浞河铁矿采空区勘查中的应用[J]. 地质与勘探,2020,56(1):113−122.
LUO Zhibo,LIU Wenqiang,CAO Pengjun,et al. Application of the high–density resistivity method in detecting a mined–out area in the Xiaozhuohe iron deposit of Laizhou City,Shandong Province[J]. Geology and Exploration,2020,56(1):113−122.
[18] YANG Haiyan,LI Fengping,YUE Jianhua,et al. Cone-shaped source characteristics and inductance effect of transient electromagnetic method[J]. Applied Geophysics,2017,14(1):165−174.
[19] LIN Jun,CHEN Jian,ZHANG Yang. Rapid and high–resolution detection of urban underground space using transient electromagnetic method[J]. IEEE Transactions on Industrial Informatics,2022,18(4):2622−2631.
[20] 杨海燕,刘志新,张华,等. 圆锥型场源瞬变电磁法试验研究[J]. 煤田地质与勘探,2021,49(6):107−112.
YANG Haiyan,LIU Zhixin,ZHANG Hua,et al. Experimental study on transient electromagnetic method with a conical source[J]. Coal Geology & Exploration,2021,49(6):107−112.
[21] 马子钧,杨海燕,李文宇,等. 煤层自燃区隐蔽火源的综合地球物理探测应用[J]. 煤田地质与勘探,2023,51(12):131−137
MA Zijun,YANG Haiyan,LI Wenyu,et al. Application of integrated geophysical surveys in the identification of hidden fire sources in spontaneous combustion zones in coal seams[J]. Coal Geology & Exploration,2023,51(12):131−137.
[22] 季洪伟,龚育龄,王粤. 高密度电阻率法在某地区含水构造勘查中的应用[J]. 东华理工大学学报(自然科学版),2013,36(增刊1):49−52.
JI Hongwei,GONG Yuling,WANG Yue. Application of high–density resistivity method in a exploration of water–bearing structure[J]. Journal of East China University of Technology (Natural Science),2013,36(Sup.1):49−52.
[23] 杨海燕,岳建华,李锋平. 斜阶跃电流激励下多匝小回线瞬变电磁场延时特征[J]. 地球物理学报,2019,62(9):3615−3628
YANG Haiyan,YUE Jianhua,LI Fengping. The decay characteristics of transient electromagnetic fields stimulated by ramp step current in multi–turn small coil[J]. Chinese Journal of Geophysics,2019,62(9):3615−3628.
[24] 李哲,杨海燕,岳建华,等. 覆盖层影响下圆锥型瞬变电磁Occam约束反演[J]. 煤田地质与勘探,2022,50(6):175−183.
LI Zhe,YANG Haiyan,YUE Jianhua,et al. Conical source transient electromagnetic response characteristics with overburden based on Occam constrained inversion[J]. Coal Geology & Exploration,2022,50(6):175−183.
[25] 任政勇,王祥,汤井田,等. 融合复杂地质信息的地球物理模型建模技术[J]. 地球物理学报,2022,65(10):3986−3996.
REN Zhengyong,WANG Xiang,TANG Jingtian,et al. A technique for constructing geophysical model from complex geological information[J]. Chinese Journal of Geophysics,2022,65(10):3986−3996.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons