Coal Geology & Exploration
Abstract
Background Sylvite serves as a strategic mineral resource that plays a significant role in ensuring food safety and sustainable agricultural development, with approximately 90% of global potash resources used for potassium fertilizer production. However, developing countries such as China have long faced the challenges of heavy dependence on potash imports and insufficient potash resource continuity. Such a supply and demand framework causes China to speed up research on potash metallogenic patterns and technical innovations in potash exploration. This will help overcome resource bottlenecks. Objective This study presented a systematic summary of global potash metallogenic models and investigated the approaches of potash exploration in deep and structurally complex areas, aiming to provide theoretical support for improving potash exploration efficiency. Methods Focusing on the geological settings and conditions of potash mineralization in marine and continental environments, the study analyzed potash enrichment mechanisms from the perspective of key factors, including tectonic activity, evaporation environments, and brine sources. hhFurthermore, this study reviewed the current research status and application progress in the geophysical exploration methods of potash, specifically exhibiting the application effects of geophysical technologies such as gravity, electromagnetic, seismic, and logging methods in potash exploration. Results and Conclusions Sylvite metallogenic models reflect the coupling effects of multiple factors, including climate, structures, and provenance. Gravity exploration identifies salt dome structures based on density differences. In contrast, electromagnetic methods are sensitive to high-salinity brines, while seismic methods allow for fine-scale characterization of the spatial morphology of potash layers when combined with pre-stack depth migration technology. However, deep concealed ore bodies are shielded by structural deformations, leading to significant attenuation of seismic signals. Furthermore, electromagnetic methods suffer from insufficient vertical resolution in low-resistance areas, while shallow gravity exploration is prone to terrain interference. These challenges still limit the precision and depth of potash exploration. Nevertheless, multidisciplinary integration, the application of intelligent exploration technologies, and in-depth research on potash metallogenic models will contribute to more accurate and efficient exploration and development of potash resources. This provides theoretical bases for breakthroughs in the evaluation of potash resources in global complex basins and offers innovative solutions for deep potash exploration.
Keywords
sylvite resource, sylvite enrichment mechanism, sylvite metallogenic model, geophysical exploration method, global scope
DOI
10.12363/issn.1001-1986.25.06.0424
Recommended Citation
QU Ping, YUE Hangyu, HUANG Xiaobing,
et al.
(2025)
"Global representative metallogenic models and geophysical exploration methods of sylvite: Current research status and prospects,"
Coal Geology & Exploration: Vol. 53:
Iss.
10, Article 42.
DOI: 10.12363/issn.1001-1986.25.06.0424
Available at:
https://cge.researchcommons.org/journal/vol53/iss10/42
Reference
[1] 张苏江,崔立伟,高鹏鑫,等. 中国钾盐资源形势分析及管理对策建议[J]. 无机盐工业,2015,47(11):1−6.
ZHANG Sujiang,CUI Liwei,GAO Pengxin,et al. Analysis on development situation of potash ore resources and recommended management strategies in China[J]. Inorganic Chemicals Industry,2015,47(11):1−6.
[2] AL RAWASHDEH R,MAXWELL P. Analysing the world potash industry[J]. Resources Policy,2014,41:143−151.
[3] 罗晓峰. 加拿大萨斯喀彻温海相钾盐矿床特征及钾矿勘探开发研究[D]. 北京:中国矿业大学(北京),2017.
LUO Xiaofeng. Saskatchewan marine potash deposits’ characteristics and the exploration & development of potash[D]. Beijing:China University of Mining & Technology (Beijing),2017.
[4] 瓦里亚什科 М Г. 钾盐矿床形成的地球化学规律[M]. 范立,译. 北京:中国工业出版社,1965.
[5] 毛翔,李江海,刘金侠. 全球钾盐资源分布规律及其构造成因[J]. 高校地质学报,2017,23(1):63−71.
MAO Xiang,LI Jianghai,LIU Jinxia. Tectonic genetic study of global potash resource and its distribution[J]. Geological Journal of China Universities,2017,23(1):63−71.
[6] 郑绵平,齐文,张永生. 中国钾盐地质资源现状与找钾方向初步分析[J]. 地质通报,2006,25(11):1239−1246.
ZHENG Mianping,QI Wen,ZHANG Yongsheng. Present situation of potash resources and direction of potash search in China[J]. Geological Bulletin of China,2006,25(11):1239−1246.
[7] 曹烨,郑厚义,要梅娟,等. 世界钾盐资源分布特征与找矿战略区划探讨[J]. 无机盐工业,2015,47(10):1−4.
CAO Ye,ZHENG Houyi,YAO Meijuan,et al. Discussion on distribution characteristics and prospecting strategy regionalization of global potash resources[J]. Inorganic Chemicals Industry,2015,47(10):1−4.
[8] 熊增华,王石军. 中国钾资源开发利用技术及产业发展综述[J]. 矿产保护与利用,2020,40(6):1−7.
XIONG Zenghua,WANG Shijun. Overview of potassium resources exploitation & utilization technology and potash industry development[J]. Conservation and Utilization of Mineral Resources,2020,40(6):1−7.
[9] 王春连,刘成林,王立成,等. 钾盐矿床成矿条件研究若干进展[J]. 地球科学进展,2013,28(9):976−987.
WANG Chunlian,LIU Chenglin,WANG Licheng,et al. Reviews on potash deposit metallogenic conditions[J]. Advances in Earth Science,2013,28(9):976−987.
[10] 饶辉辉,潘彤,贺茂勇,等. 青藏高原柴达木盆地盐湖K、Li、B等盐类资源研究进展[J]. 地球学报,2025,46(2):376−396.
RAO Huihui,PAN Tong,HE Maoyong,et al. Progress in the study of potassium,lithium,and boron salt resources in salt lakes of the Qaidam Basin on the Qinghai–Xizang Plateau[J]. Acta Geoscientica Sinica,2025,46(2):376−396.
[11] 袁见齐,霍承禹. 青海察尔汗盐湖钾盐矿床成因的若干问题[J]. 地球科学,1981,6(1):207−213.
YUAN Jianqi,HUO Chengyu. Genesis of the sylvinite deposits in the Charhan Saline Lake,Qinghai Province[J]. Journal of Earth Science,1981,6(1):207−213.
[12] 刘成林,王弭力,焦鹏程,等. 罗布泊第四纪卤水钾矿储层孔隙成因与储集机制研究[J]. 地质论评,2002,48(4):437−443.
LIU Chenglin,WANG Mili,JIAO Pengcheng,et al. Formation of pores and brine reserving mechanism of the aquifers in quaternary potash deposits in Lop Nur Lake,Xinjiang,China[J]. Geological Review,2002,48(4):437−443.
[13] 马黎春,马建强,韩继秋,等. 加拿大萨斯喀彻温省索西(Southey)钾盐矿床特征及成因[J]. 矿床地质,2014,33(5):964−976.
MA Lichun,MA Jianqiang,HAN Jiqiu,et al. Characteristics and genesis of Southey potash deposit,Saskatchewan,Canada[J]. Mineral Deposits,2014,33(5):964−976.
[14] 郑绵平,张永生,刘喜方,等. 中国盐湖科学技术研究的若干进展与展望[J]. 地质学报,2016,90(9):2123−2166.
ZHENG Mianping,ZHANG Yongsheng,LIU Xifang,et al. Progress and prospects of salt lake research in China[J]. Acta Geologica Sinica,2016,90(9):2123−2166.
[15] SHEN Lijian,SIRITONGKHAM N. The characteristics,formation and exploration progress of the potash deposits on the Khorat Plateau,Thailand and Laos,Southeast Asia[J]. China Geology,2020,3(1):67−82.
[16] 张绍栋,罗维斌,王亮,等. 测井技术在柴达木盆地深层卤水勘查中的应用研究[J]. 地质与资源,2021,30(2):168−172.
ZHANG Shaodong,LUO Weibin,WANG Liang,et al. Application of logging technology in deep brine exploration in Qaidam Basin[J]. Geology and Resources,2021,30(2):168−172.
[17] ORRIS G J,COCKER M D,DUNLAP P,et al. Potash:A global overview of evaporite–related potash resources,including spatial databases of deposits,occurrences,and permissive tracts[R]. U. S. Geological Survey Scientific Investigations Report,2014.
[18] 刘成林,赵艳军,方小敏,等. 板块构造对海相钾盐矿床分布与成矿模式的控制[J]. 地质学报,2015,89(11):1893−1907.
LIU Chenglin,ZHAO Yanjun,FANG Xiaomin,et al. Plate tectonics control on the distribution and formation of the marine potash deposits[J]. Acta Geologica Sinica,2015,89(11):1893−1907.
[19] SUN Hongwei,REN Junping,WANG Jie,et al. A review of the geological characteristics and resource potential analysis of potash deposits in Africa[J]. Journal of African Earth Sciences,2024,213:105226.
[20] 陈志勇,朱清,武海炜,等. 全球钾盐资源特征及市场发展态势分析[J/OL]. 中国地质,2025:1–24 [2025-01-22]. https://link. cnki. net/urlid/11. 1167. P. 20250121. 1800. 007.
CHEN Zhiyong,ZHU Qing,WU Haiwei,et al. Characteristics and market development trend of global potash resources[J/OL]. Geology in China,2025:1–24 [2025-01-22]. https://link. cnki. net/urlid/11. 1167. P. 20250121. 1800. 007.
[21] 刘成林,王弭力,焦鹏程,等. 世界主要古代钾盐找矿实践与中国找钾对策[J]. 化工矿产地质,2006,28(1):1−8.
LIU Chenglin,WANG Mili,JIAO Pengcheng,et al. The exploration experiences of potash deposits in the world and probing of countermeasures of China’s future potash–deposits investigation[J]. Geology of Chemical Minerals,2006,28(1):1−8.
[22] 李钟模. 世界钾盐找矿实践对我国找钾的启示[J]. 化工矿物与加工,2007,36(2):37−38.
[23] LIU Chenglin,WANG Licheng,ZHAO Yanjun,et al. The formation model for marine potash deposits within China’s small continental blocks[J]. Acta Geologica Sinica (English Edition),2014,88(Sup.1):225−226.
[24] 唐敏,刘成林,焦鹏程,等. 世界海相钾盐矿床特征定量化分析及其意义[J]. 沉积学报,2009,27(2):326−333.
TANG Min,LIU Chenglin,JIAO Pengcheng,et al. Quantitative analysis and significance of the marine potash deposits in the world[J]. Acta Sedimentologica Sinica,2009,27(2):326−333.
[25] PUEYO J J,CHONG G,JENSEN A. Neogene evaporites in desert volcanic environments:Atacama Desert,Northern Chile[J]. Sedimentology,2002,48(6):1411−1431.
[26] JONES B F,NAFTZ D L,SPENCER R J,et al. Geochemical evolution of great salt lake,Utah,USA[J]. Aquatic Geochemistry,2009,15(1/2):95−121.
[27] SMITH H I. Potash in the Permian Salt Basin[J]. Industrial & Engineering Chemistry,1938,30(8):854−860.
[28] 张雄,朱正杰,崔志伟,等. 四川盆地东部垫江盐盆早三叠世嘉陵江组四段杂卤石成因及对成钾的指示[J]. 地球科学,2022,47(1):27−35.
ZHANG Xiong,ZHU Zhengjie,CUI Zhiwei,et al. Genesis of polyhalite and its significance of Jialingjiang Formation in Dianjiang Salt Basin,eastern Sichuan Basin[J]. Earth Science,2022,47(1):27−35.
[29] WANG Shuli,ZHENG Mianping. Discovery of Triassic polyhalite in Changshou area of east Sichuan Basin and its genetic study[J]. Mineral Deposits,2014,33(5):1045−1056.
[30] 赵元艺,焦鹏程,李波涛,等. 中国可溶性钾盐资源地质特征与潜力评价[J]. 矿床地质,2010,29(4):649−656.
ZHAO Yuanyi,JIAO Pengcheng,LI Botao,et al. Geological characteristics and resource potential of soluble potash in China[J]. Mineral Deposits,2010,29(4):649−656.
[31] WARREN J K. Evaporites through time:Tectonic,climatic and eustatic controls in marine and nonmarine deposits[J]. Earth–Science Reviews,2010,98(3/4):217−268.
[32] 商朋强,祁才吉,焦森,等. 中国钾盐矿产预测评价模型和资源潜力分析[J]. 地质通报,2019,38(10):1758−1767.
SHANG Pengqiang,QI Caiji,JIAO Sen,et al. Potash assessment models and resource potential analysis in China[J]. Geological Bulletin of China,2019,38(10):1758−1767.
[33] 乜贞,卜令忠,刘建华,等. 我国盐湖钾盐资源现状及提钾工艺技术进展[J]. 地球学报,2010,31(6):869−874.
NIE Zhen,BU Lingzhong,LIU Jianhua,et al. Status of potash resources in salt lakes and progress in potash technologies in China[J]. Acta Geoscientica Sinica,2010,31(6):869−874.
[34] 牛雪,焦鹏程,曹养同,等. 青海察尔汗盐湖别勒滩区段杂卤石成因及其成钾指示意义[J]. 地质学报,2015,89(11):2087−2095.
NIU Xue,JIAO Pengcheng,CAO Yangtong,et al. The origin of polyhalite and its indicating significance for the potash formation in the Bieletan area of the Qarhan Salt Lake,Qinghai[J]. Acta Geologica Sinica,2015,89(11):2087−2095.
[35] HARDIE L A. On the significance of evaporites[J]. Annual Review of Earth and Planetary Sciences,1991,19:131−168.
[36] WARREN J K. Evaporites:A geological compendium[M]. Cham:Springer Cham,2016.
[37] SUN Mingguang,MA Lichun. Potassium–rich brine deposit in Lop Nor Basin,Xinjiang,China[J]. Scientific Reports,2018,8:7676.
[38] LONG Pengyu,ZHAO Yanjun,SUN Xiaohong,et al. Lithium enrichment in the Qarhan Salt Lake (China) was a long–term process driven by interglacial–glacial cycles[J]. Communications Earth & Environment,2025,6(1):307.
[39] 赵艳军,刘成林,张华,等. 古盐湖卤水温度对钾盐沉积的控制作用探讨[J]. 岩石学报,2015,31(9):2751−2756.
ZHAO Yanjun,LIU Chenglin,ZHANG Hua,et al. The controls of paleotemperature on potassium salt precipitation in ancient salt lakes[J]. Acta Petrologica Sinica,2015,31(9):2751−2756.
[40] 郑绵平,赵元艺,刘俊英. 第四纪盐湖沉积与古气候[J]. 第四纪研究,1998,18(4):297−307.
ZHENG Mianping,ZHAO Yuanyi,LIU Junying. Quaternary saline lake deposition and paleoclimate[J]. Quaternary Sciences,1998,18(4):297−307.
[41] 唐清敏,张雄,朱正杰,等. 四川盆地东部垫江凹陷三叠系嘉陵江组岩盐氯同位素特征与成钾指标研究[J]. 地质学报,2018,92(8):1671−1679.
TANG Qingmin,ZHANG Xiong,ZHU Zhengjie,et al. Chlorine isotopic composition and potash–forming indicator of halites of the Triassic Jialingjiang Formation in the Dianjiang depression,eastern Sichuan Basin[J]. Acta Geologica Sinica,2018,92(8):1671−1679.
[42] HOLWERDA J G,HUTCHINSON R W. Potash–bearing evaporites in the Danakil area,Ethiopia[J]. Economic Geology,1968,63(2):124−150.
[43] EUGSTER H P,HARDIE L A. Sedimentation in an ancient playa–lake complex:The Wilkins peak member of the Green River Formation of Wyoming[J]. Geological Society of America Bulletin,1975,86(3):319−334.
[44] 赵宪福,刘成林,焦鹏程,等. 钾盐矿床沉积的空间分布模型初探[J]. 矿床地质,2012,31(增刊1):503−504.
[45] 禚喜准,张林炎,陈骁帅,等. 现代盐湖沉积与岩盐析出模拟的相似性及其对成盐模式的启示[J]. 沉积学报,2018,36(6):1119−1130.
ZHUO Xizhun,ZHANG Linyan,CHEN Xiaoshuai,et al. The similarity of salt–forming between flume experiment and modern salt lake[J]. Acta Sedimentologica Sinica,2018,36(6):1119−1130.
[46] 龚大兴. 四川盆地三叠纪成盐环境、成钾条件及成因机制[D]. 成都:成都理工大学,2016.
GONG Daxing. The Triassic salt–forming environment,potash–forming conditions and genetic mechanism in Sichuan Basin[D]. Chengdu:Chengdu University of Technology,2016.
[47] 王九一,刘成林,沈立建. 典型小陆块海相成钾机理:以西西里微陆块钾盐矿床为例[J]. 矿床地质,2016,35(6):1269−1280.
WANG Jiuyi,LIU Chenglin,SHEN Lijian. Mineralization mechanism of potash salt in typical marine microplate:An example from the Sicily microplate potash salt deposit[J]. Mineral Deposits,2016,35(6):1269−1280.
[48] SRIKANTIA S V. History of Paleozoic salt accumulation[J]. Journal of the Geological Society of India,1982,23(9):465−466.
[49] 马黎春,王凯,张瑜,等. 新疆罗布泊富钾卤水矿床异常富集机理[J]. 地球科学,2022,47(1):72−81.
MA Lichun,WANG Kai,ZHANG Yu,et al. Abnormal enrichment mechanism of potassium–rich brine deposit in Lop Nor Basin of Xinjiang[J]. Earth Science,2022,47(1):72−81.
[50] 王利文,王明祥,白宝云,等. 察尔汗北部东陵湖钾盐沉积特征与成矿机理[J]. 盐湖研究,2025,33(3):70−78.
WANG Liwen,WANG Mingxiang,BAI Baoyun,et al. Sedimentary characteristics and metallogenic mechanism of potassium salt in Dongling Lake,northern Qarhan playa[J]. Journal of Salt Lake Research,2025,33(3):70−78.
[51] 赵宪福. 下刚果盆地构造活动对钾盐成矿及后期改造的约束[D]. 北京:中国地质大学(北京),2017.
ZHAO Xianfu. The constraints of tectonic activity during potassium mineralization and the later stage in the Lower Congo Basin[D]. Beijing:China University of Geosciences (Beijing),2017.
[52] 王弭力,刘成林,焦鹏程. 罗布泊盐湖钾盐矿床调查科研进展与开发现状[J]. 地质论评,2006,52(6):757−764.
WANG Mili,LIU Chenglin,JIAO Pengcheng. Investigation and scientific research progress and exploitation present situation of Lop Nur Salty Lake potash deposits,Xinjiang,China[J]. Geological Review,2006,52(6):757−764.
[53] 陈科贵,李利,李春梅,等. 活动陆块背景下蒸发盆地后生阶段富钾区的演变[J]. 地球科学进展,2014,29(4):515−522.
CHEN Kegui,LI Li,LI Chunmei,et al. Evolution of the potash–rich areas in evaporation basin during the epigenetic stage with continental block being active[J]. Advances in Earth Science,2014,29(4):515−522.
[54] 刘群. 西伯利亚涅帕钾盐矿床地质、发现经过及其对我国找钾工作的启示[J]. 地球学报,1995,16(1):45−54.
LIU Qun. Geology and discovery process of the Nepa potash deposit in Siberia and its enlightenment for potash–searching work in China[J]. Acta Geoscientica Sinica,1995,16(1):45−54.
[55] 张兵,王绪本,郑绵平,等. 四川盆地三叠系气田型深层富钾锂卤水勘探历程、进展与展望[J]. 地球学报,2024,45(5):665−677.
ZHANG Bing,WANG Xuben,ZHENG Mianping,et al. Exploration process,progress,and the prospect of deep potassium–rich lithium–rich brine in Triassic gas field of Sichuan Basin[J]. Acta Geoscientica Sinica,2024,45(5):665−677.
[56] 焦鹏程,刘成林,王弭力,等. 罗布泊盐湖钾盐矿床形成的地球化学研究[J]. 矿床地质,2006,25(增刊1):225−228.
JIAO Pengcheng,LIU Chenglin,WANG Mili,et al. Geochemistry of salt lake potash deposits in the Lop Nur,Xinjiang[J]. Mineral Deposits,2006,25(Sup.1):225−228.
[57] 郭新华,王春男,马明珠. 青海柴达木盆地察尔汗盐湖首采区钾镁盐矿床开发及老卤排放对液体钾矿的影响现状[J]. 西北地质,2006,39(1):98−104.
GUO Xinhua,WANG Chunnan,MA Mingzhu. Influence on the ore of development of the potash ore and the Laolu disposing in the first mine area of Qarhan Saline Lake,Qinghai[J]. Northwestern Geology,2006,39(1):98−104.
[58] 赵艳军,焦鹏程,汪明泉,等. 柴达木盆地–里坪盐湖富锂卤水特征、储层物性及富水区分析[J]. 地质学报,2021,95(7):2062−2072.
ZHAO Yanjun,JIAO Pengcheng,WANG Mingquan,et al. Characteristics of lithium–rich brine,reservoir physical properties and analysis on water–rich areas in the Yiliping Salt Lake,Qaidam Basin[J]. Acta Geologica Sinica,2021,95(7):2062−2072.
[59] NICOLAS M P B. Potash deposits in the Devonian Prairie Evaporite,Southwestern Manitoba (parts of NTS 62F,K)[A]. Report of Activities 2015. Manitoba Mineral Resources,Manitoba Geological Survey,2015:97–105.
[60] 伯英,曹养同,吕凤琳. 云南勐野井钾矿区及周边泉水水化学特征及地表钾异常成因分析[J]. 地质学报,2021,95(7):2193−2204.
BO Ying,CAO Yangtong,LYU Fenglin. Hydrochemical characteristics of spring water and genesis of surface potassium anomaly in the Mengyejing potash deposit and its surrounding areas in Yunnan Province[J]. Acta Geologica Sinica,2021,95(7):2193−2204.
[61] 吴双,王峻,张春光,等. 普光地区下三叠统富锂钾卤水成因与分布规律[J]. 断块油气田,2024,31(1):96−105.
WU Shuang,WANG Jun,ZHANG Chunguang,et al. Genesis and distribution law of rich lithium–potassium brine in the Lower Triassic of Puguang area[J]. Fault–Block Oil & Gas Field,2024,31(1):96−105.
[62] 袁小铭. 川西凹陷中三叠世古水动力场及富钾卤水成矿预测研究[D]. 成都:成都理工大学,2012.
YUAN Xiaoming. Study on paleohydrodynamic field in middle Triassic in the west of Sichuan sunken and potassium–rich brine mineralization prediction[D]. Chengdu:Chengdu University of Technology,2012.
[63] 贾承造,李本亮,张兴阳,等. 中国海相盆地的形成与演化[J]. 科学通报,2007,52(增刊1):1−8.
[64] 陈洪德,钟怡江,许效松,等. 中国西部三大盆地海相碳酸盐岩台地边缘类型及特征[J]. 岩石学报,2014,30(3):609−621.
CHEN Hongde,ZHONG Yijiang,XU Xiaosong,et al. Types and characteristics of carbonate platform margins of marine carbonate rock in three major basins in Western China[J]. Acta Petrologica Sinica,2014,30(3):609−621.
[65] BURGESS P M. Chapter 2 Phanerozoic evolution of the sedimentary cover of the North American Craton[J]. Sedimentary Basins of the World,2008,5:31−63.
[66] 赵越,翟明国,陈虹,等. 华北克拉通及相邻造山带古生代–侏罗纪早期大地构造演化[J]. 中国地质,2017,44(1):44−60.
ZHAO Yue,ZHAI Mingguo,CHEN Hong,et al. Paleozoic–early Jurassic tectonic evolution of North China Craton and its adjacent orogenic belts[J]. Geology in China,2017,44(1):44−60.
[67] 张永生,邢恩袁,陈文西. 国内外古陆表海盆成钾条件对比:兼论华北成钾的可能性[J]. 矿床地质,2014,33(5):897−908.
ZHANG Yongsheng,XING Enyuan,CHEN Wenxi. Comparative study of Palaeo–epicontinental marine basin potash–forming conditions between China and foreign countries with special reference to potash–forming possibilities in North China[J]. Mineral Deposits,2014,33(5):897−908.
[68] HAQ B U,AL–QAHTANI A M. Phanerozoic cycles of sea–level change on the Arabian Platform[J]. GeoArabia,2005,10(2):127−160.
[69] HAY W W,MIGDISOV A,BALUKHOVSKY A N,et al. Evaporites and the salinity of the ocean during the Phanerozoic:Implications for climate,ocean circulation and life[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2006,240(1/2):3−46.
[70] CONDIE K C. Earth as an evolving planetary system (3rd Edition)[M]. Amsterdam:Elsevier,2016.
[71] OCHSENIUS C. Die Bildung der Steinsalzlager und ihrer Mutterlaugensalze:Unter specieller Berücksichtigung der Flötze von Douglashall in der egeln’schen Mulde[M]. Pfeffer,1877
[72] WALTHER J. Lithogenesis der Gegenwart. Beobachtungen uber die Bildung der Gesteine an der heutigen Erdoberflache[M]//Dritter Teil einer Einleitung in die Geologie als historische Wissenschaft,1894:535–1055.
[73] 文军. 青藏高原可可西里地区雅西措群含盐层系的沉积特征研究[D]. 成都:成都理工大学,2012.
WEN Jun. Sedimentary characteristics of salt–bearing sequence in the Oligocene Yaxicuo Formation formation in Hoh Xil area,Qinghai–Tibet Plateau[D]. Chengdu:Chengdu University of Technology,2012.
[74] 李伟,柳顺彬,刘繁,等. 塔里木北缘中新统吉迪克组沉积环境与钾盐成矿潜力分析[J]. 新疆地质,2025,43(2):218−225.
LI Wei,LIU Shunbin,LIU Fan,et al. Sedimentary environment and potash mineralization potential of the Miocene Jidike Formation in the northern Tarim Basin[J]. Xinjiang Geology,2025,43(2):218−225.
[75] 刘振敏,李博昀,孟都. 塔里木盆地钾盐成矿地质条件分析[J]. 化工矿产地质,2016,38(4):201−214.
LIU Zhenmin,LI Boyun,MENG Du. Potash deposit formation geological condition analyse in Tarim Basin[J]. Geology of Chemical Minerals,2016,38(4):201−214.
[76] 罗晓峰,郑绵平,齐文. 加拿大萨斯喀彻温盆地泥盆纪钾盐区域成矿分析[J]. 科技导报,2016,34(24):93−100.
LUO Xiaofeng,ZHENG Mianping,QI Wen. Overview of regional mineralization of the Sevonian–age Saskatchewan Basin in Canada[J]. Science & Technology Review,2016,34(24):93−100.
[77] SCHMALZ R F. Environments of marine evaporite deposition[J]. Miner. Ind,1970,35(8):1−7.
[78] 禚喜准,郑旭,陈骁帅,等. 内陆湖盆“深水成盐”形成条件和识别标志:以东濮凹陷与现代盐湖为例[J]. 地学前缘,2021,28(1):43−59.
ZHUO Xizhun,ZHENG Xu,CHEN Xiaoshuai,et al. Forming conditions and indicators for deep–water evaporite deposits in inland lake basins:A case study of the Dongpu Sag and modern salt lakes[J]. Earth Science Frontiers,2021,28(1):43−59.
[79] HARDIE L A. The roles of rifting and hydrothermal CaCl 2 brines in the origin of potash evaporites;an hypothesis[J]. American Journal of Science,1990,290(1):43−106.
[80] LUGLI S,SCHREIBER B C,TRIBERTI B. Giant polygons in the Realmonte Mine (Agrigento,Sicily);evidence for the desiccation of a Messinian Halite Basin[J]. Journal of Sedimentary Research,1999,69(3):764−771.
[81] 郑绵平,张震,尹宏伟,等. 云南江城勐野井钾盐成矿新认识[J]. 地球学报,2014,35(1):11−24.
ZHENG Mianping,ZHANG Zhen,YIN Hongwei,et al. A new viewpoint concerning the formation of the Mengyejing potash deposit in Jiangcheng,Yunnan[J]. Acta Geoscientica Sinica,2014,35(1):11−24.
[82] LOWENSTEIN T K,SPENCER R J,ZHANG Pengxi. Origin of ancient potash evaporites:Clues from the modern nonmarine Qaidam Basin of Western China[J]. Science,1989,245(4922):1090−1092.
[83] LOWENSTEIN T K,RISACHER F. Closed basin brine evolution and the influence of Ca–Cl inflow waters:Death valley and Bristol Dry Lake California,Qaidam Basin,China,and Salar de Atacama,Chile[J]. Aquatic Geochemistry,2009,15(1/2):71−94.
[84] 王朝旭. 柴达木盆地马海盐湖全新世沉积环境及钾盐成矿作用[D]. 石家庄:河北地质大学,2021.
WANG Zhaoxu. Holocene sedimentary environment and potash mineralization of Mahai Salt Lake,Qaidam Basin[D]. Shijiazhuang:Hebei GEO University,2021.
[85] 王弭力. 柴达木盆地北部盐湖钾矿床及其开发前景[M]. 北京:地质出版社,1997.
[86] SONG Hualing,FAN Qishun,LI Qingkuan,et al. Ca–high water recharge and mixing constrain on evolution and K enrichment of brine deposits in the evaporite basin:Case and analogue study in the Qaidam Basin,Qinghai–Tibet Plateau[J]. Journal of Hydrology,2024,632:130883.
[87] 袁见齐,霍承禹,蔡克勤. 高山深盆的成盐环境:一种新的成盐模式的剖析[J]. 地质论评,1983,29(2):159−165.
YUAN Jianqi,HUO Chengyu,CAI Keqin. The high mountain–deep basin saline environment:A new genetic model of salt deposits[J]. Geological Review,1983,29(2):159−165.
[88] THOMPSON A B. Water in the Earth’s upper mantle[J]. Nature,1992,358(6384):295−302.
[89] NUTTING D I. Origin of bedded salt deposits:A critique of evaporative models and defence of a hydrothermal model[D]. Institute for Creation Research,1984.
[90] 帅开业. 地下浓缩卤水与“高山深盆”成盐环境[J]. 化工矿产地质,2019,41(4):225−228.
SHUAI Kaiye. Relationship between underground concentrated brine and the saline environment of “high mountains and deep basins”[J]. Geology of Chemical Minerals,2019,41(4):225−228.
[91] 刘成林. 大陆裂谷盆地钾盐矿床特征与成矿作用[J]. 地球学报,2013,34(5):515−527.
LIU Chenglin. Characteristics and formation of potash deposits in continental rift basins:A review[J]. Acta Geoscientica Sinica,2013,34(5):515−527.
[92] 牛雪,明圆圆,李秋辰,等. 基于重力勘探成果的罗北凹地深部钾盐盆地沉积特征[J]. 科学技术与工程,2019,19(26):83−87.
NIU Xue,MING Yuanyuan,LI Qiuchen,et al. The sedimentary characteristics of Luobei depression deep potash basin based on the results of gravity exploration[J]. Science Technology and Engineering,2019,19(26):83−87.
[93] 张明明,李博昀,张旭,等. 老挝巴根钾盐矿区下盐段钾石盐层的成因[J]. 科学技术与工程,2019,19(5):55−63.
ZHANG Mingming,LI Boyun,ZHANG Xu,et al. Cause of potassium salt layer in lower salt section of Bagan potassium salt mining area in Laos[J]. Science Technology and Engineering,2019,19(5):55−63.
[94] 宋旭锋,曹涛,黄钊,等. 重力测量在云南勐伴地区盐盆地钾盐资源调查评价中的应用[J]. 云南大学学报(自然科学版),2023,45(增刊1):64−72.
SONG Xufeng,CAO Tao,HUANG Zhao,et al. Application of gravity measurement in investigation and evaluation of potassium salt resources in salt basin of Mengban area,Yunnan[J]. Journal of Yunnan University (Natural Sciences Edition),2023,45(Sup.1):64−72.
[95] 宋晓蛟,张宏建,何琴娥. 老挝万象北班根钾盐勘查区重力场特征及其成矿远景评价[J]. 矿产勘查,2020,11(4):790−796.
SONG Xiaojiao,ZHANG Hongjian,HE Qine. Gravity field characteristics and its metallogenic prospect evaluation of Ban keun potash exploration area in north Vientiane,Laos[J]. Mineral Exploration,2020,11(4):790−796.
[96] 苗忠英,郑绵平,黄元溢,等. 三维地震和重力在思茅盆地固体钾盐勘探中的应用[J]. 矿床地质,2024,43(5):1149−1163.
MIAO Zhongying,ZHENG Mianping,HUANG Yuanyi,et al. Application of 3D seismic and gravity survey in solid potash exploration in Simao Basin,Southwest China[J]. Mineral Deposits,2024,43(5):1149−1163.
[97] TELFORD W M,GELDART L P,SHERIFF R E. Applied geophysics (2nd Edition)[M]. Cambridge:Cambridge University Press,1990.
[98] 朱自串,周丹,李德文,等. 音频大地电磁测深法在老挝万象盆地钾镁盐矿产勘探中的运用效果[J]. 物探与化探,2019,43(6):1268−1276.
ZHU Zichuan,ZHOU Dan,LI Dewen,et al. The application of natural field audio magnetotellurics sounding to the exploration of the Vientiane Basin potassium salt deposit in Laos[J]. Geophysical and Geochemical Exploration,2019,43(6):1268−1276.
[99] 王少华. 老挝万象平原重力异常及其地质体特征[J]. 化工矿产地质,2012,34(1):39−46.
WANG Shaohua. Gravity anomaly and geologic body characteristics of Vientiane plain of Laos[J]. Geology of Chemical Minerals,2012,34(1):39−46.
[100] 郭建强,武毅,曹福祥,等. 西北地区孔隙地下水矿化度评价的地球物理方法研究与应用[J]. 地球学报,2001,22(4):375−379.
GUO Jianqiang,WU Yi,CAO Fuxiang,et al. The application of geophysical techniques to estimating salinity of porous groundwater in Northwest China[J]. Acta Geoscientica Sinica,2001,22(4):375−379.
[101] 何胜,苏世杰,侯利朋. 综合物探在柴达木盆地盐湖深层卤水钾矿勘查中的应用[J]. 地质与资源,2021,30(5):628−636.
HE Sheng,SU Shijie,HOU Lipeng. Application of comprehensive geophysical prospecting in deep brine potassium deposit exploration in salt lake of Qaidam Basin[J]. Geology and Resources,2021,30(5):628−636.
[102] 郑大中,郑若锋. 论钾盐矿床的物质来源和找矿指示[J]. 盐湖研究,2006,14(4):9−17.
ZHENG Dazhong,ZHENG Ruofeng. Material sources and prospecting indicators of potassium deposits[J]. Journal of Salt Lake Research,2006,14(4):9−17.
[103] 侯献华,王伟,郑绵平,等. 柴达木盆地西部黑北凹地:大浪滩深层卤水钾盐储卤层地震响应特征研究[J]. 地学前缘,2021,28(6):134−145.
HOU Xianhua,WANG Wei,ZHENG Mianping,et al. Seismic response characteristics of the Heibei Concave:Dalangtan potassium–rich deep brine reservoir in western Qaidam Basin[J]. Earth Science Frontiers,2021,28(6):134−145.
[104] 王伟,侯献华,郑绵平,等. 深层钾盐矿高分辨率地震处理关键技术应用:以罗布泊为例[J]. 地学前缘,2021,28(6):146−154.
WANG Wei,HOU Xianhua,ZHENG Mianping,et al. Key technology application in high resolution seismic data processing for deep potash deposits:An example from Lop Nur[J]. Earth Science Frontiers,2021,28(6):146−154.
[105] 马建强,王立成,方景玲,等. 加拿大Elk Point盆地兖煤钾盐矿权区块勘探进展[J]. 矿床地质,2016,35(6):1311−1313.
[106] 宋鹏,宋希利,田明阳. 刚果盆地钾盐矿床地震反射波特征与沉积规律[J]. 地球物理学进展,2016,31(6):2641−2648.
SONG Peng,SONG Xili,TIAN Mingyang. Congo Basin potash deposit seismic reflection potter and sedimentary rule[J]. Progress in Geophysics,2016,31(6):2641−2648.
[107] 周国兴,沙亚南,李海庆. 地震勘探在加拿大萨斯克彻温盆地洪堡(Humboldt)区钾盐矿勘探中的应用[J]. 中国煤炭地质,2018,30(6):119−123.
ZHOU Guoxing,SHA Yanan,LI Haiqing. Application of seismic prospecting in Humboldt potash ore deposit exploration,Saskatchewan Basin,Canada[J]. Coal Geology of China,2018,30(6):119−123.
[108] YUE Hangyu,GUO Peng,ZHANG Tingyan,et al. Integrated geophysical exploration of favorable potassium salt mineralization on the northeastern margin of Qaidam Basin,China[J]. Journal of Geophysics and Engineering,2025,22(3):889−900.
[109] 陈科贵,李春梅,李利,等. 四川盆地含钾地层的地球物理测井标志、判别模型与应用:以川中广安地区为例[J]. 地球学报,2013,34(5):623−630.
CHEN Kegui,LI Chunmei,LI Li,et al. Geophysical logging criteria and discriminant model for the potassium–rich strata and their application to Sichuan Basin:A case study of Guang’an area of central Sichuan[J]. Acta Geoscientica Sinica,2013,34(5):623−630.
[110] 赵显令,王贵文,周正龙,等. 地球物理测井岩性解释方法综述[J]. 地球物理学进展,2015,30(3):1278−1287.
ZHAO Xianling,WANG Guiwen,ZHOU Zhenglong,et al. A review of lithology interpretation methods using geophysical well logs[J]. Progress in Geophysics,2015,30(3):1278−1287.
[111] 王元昊,石国成,叶成. 地球物理测井在老挝钾盐矿勘查中的应用[J]. 价值工程,2016,35(12):180−182.
WANG Yuanhao,SHI Guocheng,YE Cheng. Application of geophysical well logging in Laos potash deposit exploration[J]. Value Engineering,2016,35(12):180−182.
[112] 王建波,冯明刚,王昆,等. 四川盆地普光地区三叠系杂卤石测井评价与发育规律[J]. 科学技术与工程,2021,21(1):61−67.
WANG Jianbo,FENG Minggang,WANG Kun,et al. Logging evaluation and distribution rule of the Triassic polyhalite in Puguang area of Sichuan Basin[J]. Science Technology and Engineering,2021,21(1):61−67.
[113] 李进,范翔宇,熊鸿鸽,等. 四川盆地富钾卤水地球物理特征及预测方法研究:以川西地区为例[J]. 地质科学,2025,60(2):607−618.
LI Jin,FAN Xiangyu,XIONG Hongge,et al. Research on geophysical characteristics and prediction method of potassium–rich brine in western Sichuan Basin[J]. Chinese Journal of Geology,2025,60(2):607−618.
[114] 王彬玮,艾尼·买买提,卢志明,等. 南图尔盖盆地Aryskum坳陷钾盐的测井响应特征及其分布[J]. 地学前缘,2021,28(6):162−170.
WANG Binwei,MAIMAITI Aini,LU Zhiming,et al. Logging response characteristics and distribution of potash salt in Aryskum Depression,South Turgay Basin[J]. Earth Science Frontiers,2021,28(6):162−170.
[115] 梁光河. 老挝超大型钾盐矿勘探方法[J]. 化肥工业,2016,43(3):72−76.
LIANG Guanghe. The exploration method of ultra large potassic salt ore in Laos[J]. Chemical Fertilizer Industry,2016,43(3):72−76.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons