Coal Geology & Exploration
Abstract
Objective and Methods Based on extensive scientific and technical literature and technical data on coalbed methane (CBM) exploration and production projects, this study conducted a comparative analysis of the development process and latest advances in China’s critical technologies for CBM exploration and production and reviewed the CBM exploration and production history of this country over the past three decades. Accordingly, this study discussed the theoretical and technical challenges in CBM exploration and production and proposed future development directions. Advances The results indicate that the insights into conversion between adsorbed and free deep CBM prove to be a significant theoretical understanding. The breakthroughs in the ideological understanding of exploration and production, as well as the innovative applications of near-bit geosteering drilling technology and multistage volume fracturing technology for horizontal wells, elevate China’s deep CBM production to a higher level. Recent years have seen major advances in the accumulation mechanisms and modes of deep CBM, assessment methods for CBM exploration and production, and knowledge about CBM production regularity. The geology-engineering integration serves as an effective method for the prediction and assessment of play fairways, well deployment, and the research and development of adaptive technologies. Presently, the most advanced comprehensive technology system for CBM production consists of the deployment of cluster horizontal well groups, the deployment of horizontal well groups combined with vertical and directional well groups, the multistage volume fracturing of horizontal wells, and the intelligent dewatering and CBM production using rodless lifting. Furthermore, the efficient CBM production of thin coal seams suggests a breakthrough in the lower limit of coal seam thickness for CBM production and the discovery of new target layers for CBM production. China’s CBM production focuses primarily on CBM reservoirs dominated by adsorbed gas and those bearing both adsorbed and free gas. The two major CBM reservoir types differ significantly in gas accumulation mechanisms and the technologies and philosophies for CBM exploration and production. Prospects It is recommended that the future CBM exploration and production in China should center on four fields. Specifically, deep CBM will be the primary target for future CBM exploration and production and technological research, and it is necessary to intensify and accelerate the exploration and production of deep CBM resources in platform-type sedimentary basins such as the Ordos, Junggar, Turpan-Hami, Tarim, and Sichuan Basins. Large-scale production of moderately deep CBM is identified as an important direction. Shallow CBM, acting as the “ballast stone” for the development of the CBM industry, is supposed to keep continued stable production and serve as the replacement for current CBM resources. Additionally, CBM in low-rank coal reservoirs is a potential target for CBM exploration and production.
Keywords
coalbed methane (CBM), exploration and production, technology, Qinshui Basin, Ordos Basin
DOI
10.12363/issn.1001-1986.24.11.0723
Recommended Citation
Y.
(2025)
"China’s CBM exploration and production and associated technological advancements: A review and reflections,"
Coal Geology & Exploration: Vol. 53:
Iss.
1, Article 9.
DOI: 10.12363/issn.1001-1986.24.11.0723
Available at:
https://cge.researchcommons.org/journal/vol53/iss1/9
Reference
[1] 国家能源局. 2023年煤层气产量达到117.7亿立方米[EB/OL]. (2024-01-25) [2024-11-16]. https://www. nea. gov. cn/2024-01/25/c_1310761983. htm.
[2] 秦勇,宋全友,傅雪海. 煤层气与常规油气共采可行性探讨:深部煤储层平衡水条件下的吸附效应[J]. 天然气地球科学,2005,16(4):492−498.
QIN Yong,SONG Quanyou,FU Xuehai. Discussion on reliability for co–mining the coalbed gas and normal petroleum and natural gas:Absorptive effect of deep coal reservoir under condition of balanced water[J]. Natural Gas Geoscience,2005,16(4):492−498.
[3] 秦勇,申建. 论深部煤层气基本地质问题[J]. 石油学报,2016,37(1):125−136.
QIN Yong,SHEN Jian. On the fundamental issues of deep coalbed methane geology[J]. Acta Petrolei Sinica,2016,37(1):125−136.
[4] 秦勇. 中国深部煤层气地质研究进展[J]. 石油学报,2023,44(11):1791−1811.
QIN Yong. Progress on geological research of deep coalbed methane in China[J]. Acta Petrolei Sinica,2023,44(11):1791−1811.
[5] 康永尚,闫霞,皇甫玉慧,等. 深部超饱和煤层气藏概念及主要特点[J]. 石油学报,2023,44(11):1781−1790.
KANG Yongshang,YAN Xia,HUANGFU Yuhui,et al. Concept and main characteristics of deep oversaturated coalbed methane reservoir[J]. Acta Petrolei Sinica,2023,44(11):1781−1790.
[6] 李明潮,张五侪. 中国主要煤田的浅层煤成气[M]. 北京:科学出版社,1990.
[7] 张新民,张遂安,钟玲文,等. 中国的煤层甲烷[M]. 西安:陕西科学技术出版社,1991.
[8] 张新民. 中国煤层气地质与资源评价[M]. 北京:科学出版社,2002.
[9] 冯三利,胡爱梅,叶建平. 中国煤层气勘探开发技术研究[M]. 北京:石油工业出版社,2007.
[10] 宋岩,张新民,柳少波,等. 中国煤层气地质与开发基础理论[M]. 北京:科学出版社,2012.
[11] 张君峰,毕彩芹,汤达祯,等. 中国煤层气勘探开发探索与实践[M]. 北京:地质出版社,2020.
[12] 徐凤银,陈东,梁为,等. 煤层气(煤矿瓦斯)勘探开发技术进展及发展方向[M]. 北京:科学出版社,2020.
[13] MCLENNAN J D. A guide to determining coalbed gas content[J]. The AusIMM Bulletin:Journal of the Australasian Institute of Mining and Metallurgy,1996(8):58.
[14] SAULSBERRY J L,SCHAFER P S,SCHRAUFNAGEL R A,et al. A guide to coalbed methane reservoir engineering[M]. Chicago:Gas Research Institute,1996.
[15] HOLLUB V A,SCHAFER P S. A guide to coalbed methane operations[M]. Chicago:Gas Research Institute,1992.
[16] 地质矿产部华北石油地质局. 煤层气译文集[M]. 郑州:河南科学技术出版社,1990.
[17] 秦勇. 中国煤层气产业化面临的形势与挑战(Ⅰ):当前所处的发展阶段[J]. 天然气工业,2006,26(1):4−7.
QIN Yong. Situations and challenges for coalbed methane industralization in China (Ⅰ):At the current stage of growing period[J]. Natural Gas Industry,2006,26(1):4−7.
[18] RIGHTMIRE C T,EDDY G E,KIRR J N. Coalbed methane resource[M]. Tulsa:American Association of Petroleum Geologists,1984.
[19] BOYER C M,BAI Qingzhao. Methodology of coalbed methane resource assessment[J]. International Journal of Coal Geology,1998,35(1-4):349−368.
[20] AYERS W B,KAISER W R,LAUBACH S E,et al. Geologic and hydrologic controls on the occurrence and producibility of coalbed methane[R]. Austin:The University of Texas at Austin,1991.
[21] JOHNSON R C,FLORES R M. Developmental geology of coalbed methane from shallow to deep in Rocky Mountain Basins and in Cook Inlet–Matanuska Basin,Alaska,U. S. A. and Canada[J]. International Journal of Coal Geology,1998,35(1/2/3/4):241−282.
[22] MASTALERZ M,GLIKSON M,GOLDING S D. Coalbed methane:Scientific,environmental and economic evaluation[M]. Dordrecht:Springer Netherlands,1999.
[23] 程爱国,林大扬. 中国聚煤作用系统分析[M]. 徐州:中国矿业大学出版社,2001.
[24] 中国煤田地质总局. 中国煤层气资源[M]. 徐州:中国矿业大学出版社,1998.
[25] 国土资源部油气资源战略研究中心. 全国煤层气资源评价[M]. 北京:中国大地出版社,2009.
[26] 中国石化新星石油公司华北石油局. 中国煤层气盆地[M]. 北京:地质出版社,2005.
[27] 桑树勋,李瑞明,刘世奇,等. 新疆煤层气大规模高效勘探开发关键技术领域研究进展与突破方向[J]. 煤炭学报,2024,49(1):563−585.
SANG Shuxun,LI Ruiming,LIU Shiqi,et al. Research progress and breakthrough directions of the key technical fields for large scale and efficient exploration and development of coalbed methane in Xinjiang[J]. Journal of China Coal Society,2024,49(1):563−585.
[28] QIN Yong,YE Jianping,LIN Dayang. Geological seeking for potential CBM–accumulating zones and districts in China[C]//Proceedings of the 99 International Symposium on Mining and Science and Technology,Xie Heping and Golosinski T S (ed). Rotterdam:Balkema Publishers,1999:243–246.
[29] 朱庆忠,杨延辉,王玉婷,等. 高阶煤层气高效开发工程技术优选模式及其应用[J]. 天然气工业,2017,37(10):27−34.
ZHU Qingzhong,YANG Yanhui,WANG Yuting,et al. Optimal geological–engineering models for highly efficient CBM gas development and their application[J]. Natural Gas Industry,2017,37(10):27−34.
[30] 秦勇,傅雪海,叶建平,等. 中国煤储层岩石物理学因素控气特征及机理[J]. 中国矿业大学学报,1999,28(1):14−19.
QIN Yong,FU Xuehai,YE Jianping,et al. Geological controls and their mechanisms of coal–reservoir petrography and physics of coalbed methane occurrence in China[J]. Journal of China University of Mining & Technology,1999,28(1):14−19.
[31] 周荣福,傅雪海,秦勇,等. 我国煤储层等温吸附常数分布规律及其意义[J]. 煤田地质与勘探,2000,28(5):23−26.
ZHOU Rongfu,FU Xuehai,QIN Yong,et al. Distribution regularities and significance of isothermal adsorption constants in coal reservoir,China[J]. Coal Geology & Exploration,2000,28(5):23−26.
[32] 傅雪海,秦勇,叶建平,等. 中国部分煤储层解吸特性及甲烷采收率[J]. 煤田地质与勘探,2000,28(2):19−22.
FU Xuehai,QIN Yong,YE Jianping,et al. Desorption properties of some coal reservoirs and methane recovery recovery rate in China[J]. Coal Geology & Exploration,2000,28(2):19−22.
[33] 傅雪海,姜波,秦勇,等. 用测井曲线划分煤体结构和预测煤储层渗透率[J]. 测井技术,2003,27(2):140−143.
FU Xuehai,JIANG Bo,QIN Yong,et al. Classification of coalbody structure and prediction of coal reservoir permeability with log curves[J]. Well Logging Technology,2003,27(2):140−143.
[34] 肖航,张占松,郭建宏,等. 基于随机森林结合地球物理测井资料的煤体结构识别方法及应用[J]. 科学技术与工程,2021,21(24):10174−10180.
XIAO Hang,ZHANG Zhansong,GUO Jianhong,et al. Coal structure identification method based on random forest combined with geophysical logging data and its application[J]. Science Technology and Engineering,2021,21(24):10174−10180.
[35] 郭建宏,杜婷,张占松,等. 基于支持向量机与地球物理测井资料的煤体结构识别方法[J]. 物探与化探,2021,45(3):768−777.
GUO Jianhong,DU Ting,ZHANG Zhansong,et al. The coal structure identification method based on support vector machine and geophysical logging data[J]. Geophysical and Geochemical Exploration,2021,45(3):768−777.
[36] 邢力仁,柳迎红,郭广山,等. 不同煤体结构条件下煤层压裂与产气效果分析[C]//2019年煤层气学术研讨会论文集. 北京:地质出版社,2019.
[37] 秦瑞宝,叶建平,李利,等. 基于机器学习的煤层含气量测井评价方法:以沁水盆地柿庄南区块为例[J]. 石油物探,2023,62(1):68−79.
QIN Ruibao,YE Jianping,LI Li,et al. Artificial–intelligence and machine–learning models of coalbed methane content based on geophysical logging data:A case study in Shizhuang south Block of Qinshui Basin,China[J]. Geophysical Prospecting for Petroleum,2023,62(1):68−79.
[38] 宋佳佳,孙建孟. 游离态煤层气含量计算方法研究[C]//2017年煤层气学术研讨会论文集. 北京:地质出版社,2017.
[39] 郭绪杰,支东明,毛新军,等. 准噶尔盆地煤岩气的勘探发现及意义[J]. 中国石油勘探,2021,26(6):38−49.
GUO Xujie,ZHI Dongming,MAO Xinjun,et al. Discovery and significance of coal measure gas in Junggar Basin[J]. China Petroleum Exploration,2021,26(6):38−49.
[40] 叶建平,张守仁,凌标灿,等. 煤层气物性参数随埋深变化规律研究[J]. 煤炭科学技术,2014,42(6):35−39.
YE Jianping,ZHANG Shouren,LING Biaocan,et al. Study on variation law of coalbed methane physical property parameters with seam depth[J]. Coal Science and Technology,2014,42(6):35−39.
[41] 孟召平,田永东,李国富. 沁水盆地南部地应力场特征及其研究意义[J]. 煤炭学报,2010,35(6):975−981.
MENG Zhaoping,TIAN Yongdong,LI Guofu. Characteristics of in–situ stress field in southern Qinshui Basin and its research significance[J]. Journal of China Coal Society,2010,35(6):975−981.
[42] 李勇,汤达祯,孟尚志,等. 鄂尔多斯盆地东缘煤储层地应力状态及其对煤层气勘探开发的影响[J]. 矿业科学学报,2017,2(5):416−424.
LI Yong,TANG Dazhen,MENG Shangzhi,et al. The in–situ stress of coal reservoirs in east margin of Ordos Basin and its influence on coalbed methane development[J]. Journal of Mining Science and Technology,2017,2(5):416−424.
[43] 赵庆波,李五忠,孙粉锦. 中国煤层气分布特征及高产富集因素[J]. 石油学报,1997,18(4):1−6.
ZHAO Qingbo,LI Wuzhong,SUN Fenjin. Distribution and accumulation regularity for coalbed methane in China[J]. Acta Petrolei Sinica,1997,18(4):1−6.
[44] 赵庆波,孙粉锦,李五忠. 煤层气勘探开发地质理论与实践[M]. 北京:石油工业出版社,2011.
[45] 李勇,孟尚志,吴鹏,等. 煤层气成藏机理及气藏类型划分:以鄂尔多斯盆地东缘为例[J]. 天然气工业,2017,37(8):22−30.
LI Yong,MENG Shangzhi,WU Peng,et al. Accumulation mechanisms and classification of CBM reservoir types:A case study from the eastern margin of the Ordos Basin[J]. Natural Gas Industry,2017,37(8):22−30.
[46] 叶建平,武强,叶贵钧,等. 沁水盆地南部煤层气成藏动力学机制研究[J]. 地质论评,2002,48(3):319−323.
YE Jianping,WU Qiang,YE Guijun,et al. Study on the coalbed methane reservoir–forming dynamic mechanism in the southern Qinshui Basin,Shanxi[J]. Geological Review,2002,48(3):319−323.
[47] 叶建平,武强,王子和. 水文地质条件对煤层气赋存的控制作用[J]. 煤炭学报,2001,26(5):459−462.
YE Jianping,WU Qiang,WANG Zihe. Controlled characteristics of hydrogeological conditions on the coalbed methane migration and accumulation[J]. Journal of China Coal Society,2001,26(5):459−462.
[48] 晁巍巍. 沁水盆地南部煤层气藏地质类型与产能关系研究[J]. 煤,2024,33(5):65−67.
CHAO Weiwei. Study on the relationship between geological types and productivity of coalbed methane reservoirs in southern Qinshui Basin[J]. Coal,2024,33(5):65−67.
[49] 孙粉锦,李五忠,孙钦平,等. 二连盆地吉尔嘎朗图凹陷低煤阶煤层气勘探[J]. 石油学报,2017,38(5):485−492.
SUN Fenjin,LI Wuzhong,SUN Qinping,et al. Low–rank coalbed methane exploration in Jiergalangtu Sag,Erlian Basin[J]. Acta Petrolei Sinica,2017,38(5):485−492.
[50] 孙粉锦,田文广,陈振宏,等. 中国低煤阶煤层气多元成藏特征及勘探方向[J]. 天然气工业,2018,38(6):10−18.
SUN Fenjin,TIAN Wenguang,CHEN Zhenhong,et al. Low–rank coalbed methane gas pooling in China:Characteristics and exploration orientation[J]. Natural Gas Industry,2018,38(6):10−18.
[51] 陈振宏,孙粉锦,李五忠,等. 中国低煤阶煤层气勘探突破及意义:以二连盆地吉尔嘎朗图凹陷为例[C]//2018年全国煤层气学术研讨会论文集. 北京:石油工业出版社,2018.
[52] 孟芹,李玲,李杰,等. 二连盆地巴彦花凹陷煤层气成因类型及生气潜力[J]. 煤田地质与勘探,2023,51(11):24−33.
MENG Qin,LI Ling,LI Jie,et al. Genetic type and gas–generating potential of coalbed methane in the Bayanhua Sag,Erlian Basin[J]. Coal Geology & Exploration,2023,51(11):24−33.
[53] 林海涛,李玲,唐淑玲,等. 二连盆地富气凹陷低阶煤煤层气成因及成藏机制[J]. 煤田地质与勘探,2024,52(2):60−69.
LIN Haitao,LI Ling,TANG Shuling,et al. Origin and accumulation mechanisms of coalbed methane in low–rank coals in gas–rich sags in the Erlian Basin[J]. Coal Geology & Exploration,2024,52(2):60−69.
[54] 秦勇,熊孟辉,易同生,等. 论多层叠置独立含煤层气系统:以贵州织金–纳雍煤田水公河向斜为例[J]. 地质论评,2008,54(1):65−70.
QIN Yong,XIONG Menghui,YI Tongsheng,et al. On unattached multiple superposed coalbed–methane system:In a case of the Shuigonghe Syncline,Zhijin–Nayong Coalfield,Guizhou[J]. Geological Review,2008,54(1):65−70.
[55] 秦勇,申建,沈玉林. 叠置含气系统共采兼容性:煤系“三气”及深部煤层气开采中的共性地质问题[J]. 煤炭学报,2016,41(1):14−23.
QIN Yong,SHEN Jian,SHEN Yulin. Joint mining compatibility of superposed gas–bearing systems:A general geological problem for extraction of three natural gases and deep CBM in coal series[J]. Journal of China Coal Society,2016,41(1):14−23.
[56] 陈贞龙. 延川南深部煤层气田地质单元划分及开发对策[J]. 煤田地质与勘探,2021,49(2):13−20.
CHEN Zhenlong. Geological unit division and development countermeasures of deep coalbed methane in southern Yanchuan Block[J]. Coal Geology & Exploration,2021,49(2):13−20.
[57] 杨延辉,王玉婷,刘忠,等. 沁水盆地南部高煤阶煤层气高效开发对策与实践[J]. 中国石油勘探,2024,29(4):17−30.
YANG Yanhui,WANG Yuting,LIU Zhong,et al. Strategy and practice of high–efficiency development of high–rank coalbed methane in the southern Qinshui Basin[J]. China Petroleum Exploration,2024,29(4):17−30.
[58] 杨延辉,李梦溪,张辉,等. 沁水盆地南部中深部煤层气富集高产控制因素与有利区评价[J]. 天然气地球科学,2024,35(10):1740−1749.
YANG Yanhui,LI Mengxi,ZHANG Hui,et al. Evaluation of controlling factors and favorable zones for coalbed methane enrichment and high production in the mid–deep southern Qinshui Basin[J]. Natural Gas Geoscience,2024,35(10):1740−1749.
[59] 李贵中,王红岩,吴立新,等. 煤层气向斜控气论[J]. 天然气工业,2005,25(1):26−28.
LI Guizhong,WANG Hongyan,WU Lixin,et al. Theory of syncline–controlled coalbed methane[J]. Natural Gas Industry,2005,25(1):26−28.
[60] 孙粉锦,王勃,王玫珠,等. 煤层气富集高产理论进展与定量化评价[C]. 银川:2016年全国天然气学术年会,2016.
[61] 张遂安. 煤层气勘探理论的探索与实践[C]. 北京:2005第五届国际煤层气论坛暨第一届中日煤炭技术研讨会“国际甲烷市场化合作计划”中国地区会议,2005.
[62] 孙斌,杨敏芳,杨青,等. 准噶尔盆地深部煤层气赋存状态分析[J]. 煤炭学报,2017,42(增刊1):195−202.
SUN Bin,YANG Minfang,YANG Qing,et al. Analysis on occurrence state of deep coalbed methane in Junggar Basin[J]. Journal of China Coal Society,2017,42(Sup.1):195−202.
[63] 康永尚,皇甫玉慧,张兵,等. 含煤盆地深层“超饱和”煤层气形成条件[J]. 石油学报,2019,40(12):1426−1438.
KANG Yongshang,HUANGFU Yuhui,ZHANG Bing,et al. Formation conditions for deep oversaturated coalbed methane in coal–bearing basins[J]. Acta Petrolei Sinica,2019,40(12):1426−1438.
[64] 杨焦生,冯鹏,唐淑玲,等. 大宁–吉县区块深部煤层气相态控制因素及含量预测模型[J]. 石油学报,2023,44(11):1879−1891.
YANG Jiaosheng,FENG Peng,TANG Shuling,et al. Phase control factors and content prediction model of deep coalbed methane in Daning–Jixian Block[J]. Acta Petrolei Sinica,2023,44(11):1879−1891.
[65] 陈刚,秦勇,李五忠,等. 鄂尔多斯盆地东部深层煤层气成藏地质条件分析[J]. 高校地质学报,2012,18(3):465−473.
CHEN Gang,QIN Yong,LI Wuzhong,et al. Analysis of geological conditions of deep coalbed methane reservoiring in the eastern Ordos Basin[J]. Geological Journal of China Universities,2012,18(3):465−473.
[66] 杨敏芳,孙斌,鲁静,等. 准噶尔盆地深、浅层煤层气富集模式对比分析[J]. 煤炭学报,2019,44(增刊2):601−609.
YANG Minfang,SUN Bin,LU Jing,et al. Comparative analysis on the enrichment patterns of deep and shallow CBM in Junggar Basin[J]. Journal of China Coal Society,2019,44(Sup.2):601−609.
[67] 兰浩,杨兆彪,仇鹏,等. 新疆准噶尔盆地白家海凸起深部煤层气勘探开发进展及启示[J]. 煤田地质与勘探,2024,52(2):13−22.
LAN Hao,YANG Zhaobiao,QIU Peng,et al. Exploration and exploitation of deep coalbed methane in the Baijiahai Uplift,Junggar Basin:Progress and its implications[J]. Coal Geology & Exploration,2024,52(2):13−22.
[68] 陈刚. 准噶尔盆地彩南地区深层低阶煤吸附特征及其影响因素[J]. 煤田地质与勘探,2016,44(2):50−54.
CHEN Gang. The adsorption characteristics and affecting factors of deep low–rank coal in Cainan Area of Junggar Basin[J]. Coal Geology & Exploration,2016,44(2):50−54.
[69] 徐凤银,王成旺,熊先钺,等. 鄂尔多斯盆地东缘深部煤层气成藏演化规律与勘探开发实践[J]. 石油学报,2023,44(11):1764−1780.
XU Fengyin,WANG Chengwang,XIONG Xianyue,et al. Evolution law of deep coalbed methane reservoir formation and exploration and development practice in the eastern margin of Ordos Basin[J]. Acta Petrolei Sinica,2023,44(11):1764−1780.
[70] 朱光辉,季洪泉,米洪刚,等. 神府深部煤层气大气田的发现与启示[J]. 煤田地质与勘探,2024,52(8):12−21.
ZHU Guanghui,JI Hongquan,MI Honggang,et al. Discovery of a large gas field of deep coalbed methane in the Shenfu Block and its implications[J]. Coal Geology & Exploration,2024,52(8):12−21.
[71] 聂志宏,徐凤银,时小松,等. 鄂尔多斯盆地东缘深部煤层气开发先导试验效果与启示[J]. 煤田地质与勘探,2024,52(2):1−12.
NIE Zhihong,XU Fengyin,SHI Xiaosong,et al. Outcomes and implications of pilot tests for deep coalbed methane production on the eastern margin of the Ordos Basin[J]. Coal Geology & Exploration,2024,52(2):1−12.
[72] 徐凤银,聂志宏,孙伟,等. 鄂尔多斯盆地东缘深部煤层气高效开发理论技术体系[J]. 煤炭学报,2024,49(1):528−544.
XU Fengyin,NIE Zhihong,SUN Wei,et al. Theoretical and technological system for highly efficient development of deep coalbed methane in the eastern edge of Erdos Basin[J]. Journal of China Coal Society,2024,49(1):528−544.
[73] 闫霞,徐凤银,聂志宏,等. 深部微构造特征及其对煤层气高产“甜点区”的控制:以鄂尔多斯盆地东缘大吉地区为例[J]. 煤炭学报,2021,46(8):2426−2439.
YAN Xia,XU Fengyin,NIE Zhihong,et al. Microstructure characteristics of Daji area in east Ordos Basin and its control over the high yield dessert of CBM[J]. Journal of China Coal Society,2021,46(8):2426−2439.
[74] 王志壮,吴鹏,孙强,等. 临兴区块深部煤层气井生产特征及影响因素[J]. 煤田地质与勘探,2024,52(8):69−78.
WANG Zhizhuang,WU Peng,SUN Qiang,et al. Production characteristics of deep coalbed methane wells in the Linxing Block and associated their influencing factors[J]. Coal Geology & Exploration,2024,52(8):69−78.
[75] 席胜利,闫伟,刘新社,等. 鄂尔多斯盆地天然气勘探新领域、新类型及资源潜力[J]. 石油学报,2024,45(1):33−51.
XI Shengli,YAN Wei,LIU Xinshe,et al. New fields,new types and resource potentials of natural gas exploration in Ordos Basin[J]. Acta Petrolei Sinica,2024,45(1):33−51.
[76] 刘立军,陈必武,李宗源,等. 华北油田煤层气水平井钻完井方式优化与应用[J]. 煤炭工程,2019,51(10):77−81.
LIU Lijun,CHEN Biwu,LI Zongyuan,et al. Optimization of drilling and completion methods for horizontal wells of coalbed methane in Huabei Oilfield[J]. Coal Engineering,2019,51(10):77−81.
[77] 肖洋,宗庆伟,李榕,等. 漂浮下套管技术在川西长裸眼水平井的试验[J]. 钻采工艺,2022,45(5):34−38.
XIAO Yang,ZONG Qingwei,LI Rong,et al. Experiment of floating casing technology in long open–hole horizontal well in western Sichuan[J]. Drilling & Production Technology,2022,45(5):34−38.
[78] 梅永贵,郭简,苏雷,等. 无杆泵排采技术在沁水煤层气田的应用[J]. 煤炭科学技术,2016,44(5):64−67.
MEI Yonggui,GUO Jian,SU Lei,et al. Application of rodless pump drainage technology to Qinshui Coalbed Methane Field[J]. Coal Science and Technology,2016,44(5):64−67.
[79] 朱庆忠,李志军,李宗源,等. 复杂地质条件下煤层气高效开发实践与认识:以沁水盆地郑庄区块为例[J]. 煤田地质与勘探,2023,51(1):131−138.
ZHU Qingzhong,LI Zhijun,LI Zongyuan,et al. Practice and cognition of efficient CBM development under complex geological conditions:A case study of Zhengzhuang Block,Qinshui Basin[J]. Coal Geology & Exploration,2023,51(1):131−138.
[80] 王鹏,李斌,王昆剑,等. 神府区块深部煤层气钻完井关键技术及应用[J]. 煤田地质与勘探,2024,52(8):44−56.
WANG Peng,LI Bin,WANG Kunjian,et al. Critical drilling and completion techniques for deep coalbed methane in the Shenfu Block and their applications[J]. Coal Geology & Exploration,2024,52(8):44−56.
[81] 贾佳,夏忠跃,冯雷,等. 鄂尔多斯盆地深煤层水平井钻井提速提效技术及应用[C]//2023年煤层气学术研讨会论文集. 北京:地质出版社,2023:284–291.
[82] 杨健,魏嘉宇,王岗,等. 山西大宁区块深层煤层气二开制水平井钻井液体系及应用技术[C]//2023年煤层气学术研讨会论文集. 北京:地质出版社,2023:317–325.
[83] 耿学礼,郑晓斌,苏延辉,等. 沁南区域煤层气水平井瓜尔胶钻井液技术[J]. 石油钻探技术,2023,51(1):34−39.
GENG Xueli,ZHENG Xiaobin,SU Yanhui,et al. Guar gum drilling fluid technology for coalbed methane horizontal wells in Qinnan Area[J]. Petroleum Drilling Techniques,2023,51(1):34−39.
[84] 申鹏磊,白建平,李贵山,等. 深部煤层气水平井测–定–录一体化地质导向技术[J]. 煤炭学报,2020,45(7):2491−2499.
SHEN Penglei,BAI Jianping,LI Guishan,et al. Integrated geo–steering technology of logging and orientation in deep coalbed methane horizontal well[J]. Journal of China Coal Society,2020,45(7):2491−2499.
[85] 刘明军,李兵,黄巍. 煤层气水平井无导眼地质导向钻进技术[J]. 煤田地质与勘探,2020,48(1):233−239.
LIU Mingjun,LI Bing,HUANG Wei. Geosteering technology and CBM horizontal well drilling without pilot hole[J]. Coal Geology & Exploration,2020,48(1):233−239.
[86] 朱年涛,李富强,王新东,等. 近钻头地质导向技术在煤层气水平井中的应用[J]. 石油和化工设备,2023,26(2):49−52.
ZHU Niantao,LI Fuqiang,WANG Xindong,et al. Application of near–bit geosteering technique for horizontal wells in coal bed gas[J]. Petro & Chemical Equipment,2023,26(2):49−52.
[87] 李斌,杨帆,张红杰,等. 神府区块深部煤层气高效开发技术研究[J]. 煤田地质与勘探,2024,52(8):57−68.
LI Bin,YANG Fan,ZHANG Hongjie,et al. Technology for efficient production of deep coalbed methane in the Shenfu Block[J]. Coal Geology & Exploration,2024,52(8):57−68.
[88] 张遂安,杜彩霞,刘程. 规模开发条件下煤层气相态变化规律与开发方式[J]. 煤炭科学技术,2015,43(2):119−122.
ZHANG Sui’an,DU Caixia,LIU Cheng. Gas phase changing law and development mode of coalbed methane under condition of scale development[J]. Coal Science and Technology,2015,43(2):119−122.
[89] 徐春成,綦耀光,孟尚志,等. 煤层气排采技术评价与设备优选[J]. 石油矿场机械,2012,41(10):59−64.
XU Chuncheng,QI Yaoguang,MENG Shangzhi,et al. Evaluation of discharge technology and optimal selection of equipments on CBM wells[J]. Oil Field Equipment,2012,41(10):59−64.
[90] 刘国伟,李梦溪,刘忠,等. 煤层气多分支水平井排采控制技术研究[J]. 中国煤层气,2014,11(1):12−15.
LIU Guowei,LI Mengxi,LIU Zhong,et al. Researches on recovery control for multilateral horizontal wells in coalbed methane development[J]. China Coalbed Methane,2014,11(1):12−15.
[91] 张聪,胡秋嘉,冯树仁,等. 沁水盆地南部煤层气地质工程一体化关键技术[J]. 煤矿安全,2024,55(2):19−26.
ZHANG Cong,HU Qiujia,FENG Shuren,et al. Key technologies for integration of coalbed methane geology and engineering in southern Qinshui Basin[J]. Safety in Coal Mines,2024,55(2):19−26.
[92] 赵兴龙,常昊. 煤层气井整体压裂及排采技术研究:以延川南煤层气田为例[J]. 中国煤炭地质,2021,33(1):31−35.
ZHAO Xinglong,CHANG Hao. Study on CBM well integral fracturing and drainage technology:A case study of Yanchuannan CBM Field[J]. Coal Geology of China,2021,33(1):31−35.
[93] 张兵,李勇,贾雨婷,等. 薄–超薄煤层特征及天然气合层开发突破:以沁水盆地潘河区块为例[J]. 天然气工业,2023,43(10):83−93.
ZHANG Bing,LI Yong,JIA Yuting,et al. Characteristics and commingled natural gas production breakthrough of thin and ultra–thin coal beds in the Panhe Block of the Qinshui Basin[J]. Natural Gas Industry,2023,43(10):83−93.
[94] 米洪刚,朱光辉,赵卫,等. 沁水盆地潘庄煤层气田地质工程一体化应用实践[J]. 中国石油勘探,2022,27(1):120−126.
MI Honggang,ZHU Guanghui,ZHAO Wei,et al. Application practice of geology and engineering integration in Panzhuang CBM Field,Qinshui Basin[J]. China Petroleum Exploration,2022,27(1):120−126.
[95] 朱庆忠. 我国高阶煤煤层气疏导式高效开发理论基础:以沁水盆地为例[J]. 煤田地质与勘探,2022,50(3):82−91.
ZHU Qingzhong. Theoretical basis of dredging and efficient development of high–rank coalbed methane in China:A case study of the Qinshui Basin[J]. Coal Geology & Exploration,2022,50(3):82−91.
[96] 叶建平,侯淞译,张守仁. “十三五”期间我国煤层气勘探开发进展及下一步勘探方向[J]. 煤田地质与勘探,2022,50(3):15−22.
YE Jianping,HOU Songyi,ZHANG Shouren. Progress of coalbed methane exploration and development in China during the 13th Five–Year Plan period and the next exploration direction[J]. Coal Geology & Exploration,2022,50(3):15−22.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons