•  
  •  
 

Coal Geology & Exploration

Abstract

Background and Significance In response to the serious challenges posed by the goals of peak carbon dioxide emissions and carbon neutrality, the intelligentization of coal mines is an inevitable course and a significant sign of the high-quality, sustainable development of the coal industry in the New era. Mine geological work, providing geological foundation and guarantee for underground coal mining, plays an increasingly significant role in the transformation and upgrading of the coal industry for high-quality development. Constructing an intelligent geological guarantee technology system for coal mining by combining mine geology with artificial intelligence (AI) can provide a comprehensive, whole-process geological guarantee for safe, efficient, green, and intelligent coal mining. Therefore, building such a technology system represents the development target and inevitable trend for mine geological work to match the goal of the intelligent construction of coal mines in the new era. The technology system will surely become the novel productivity that boosts the quality and efficiency of mine geological work. Methods and Results By exploring the scientific connotation of the technology system, this study preliminarily established the architecture of the technology system. Then, this study systematically sorted the five subsystems of the technology system (i.e., the intelligent management subsystem for fundamental geological survey information, the intelligent prediction and early warning subsystem for geologic hazards in mines, the intelligent monitoring, prediction, and early warning subsystem for ecosystems in mining areas, the intelligent identification subsystem for favorable mining blocks, and the transparent mining face subsystem), as well as their core modules. Conclusions Notably, with the constant advancements in technologies for geological explorations and detections, the effectiveness of the technology system depends on the accuracy and reliability of original data, ultimately relying on the number and professional quality of personnel engaged in geological surveys. Therefore, it is necessary to further strengthen the introduction and cultivation of professionals in the field of mining geology.

Keywords

mining geology, artificial intelligence (AI), geological guarantee, technology system, talent team

DOI

10.12363/issn.1001-1986.24.07.0492

Reference

[1] 谢克昌. 新型能源体系发展背景下煤炭清洁高效转化的挑战及途径[J]. 煤炭学报,2024,49(1):47−56.

XIE Kechang. Develop new energy system and promote clean and efficient conversion of coal[J]. Journal of China Coal Society,2024,49(1):47−56.

[2] 彭苏萍. 我国煤矿安全高效开采地质保障系统研究现状及展望[J]. 煤炭学报,2020,45(7):2331−2345.

PENG Suping. Current status and prospects of research on geological assurance system for coal mine safe and high efficient mining[J]. Journal of China Coal Society,2020,45(7):2331−2345.

[3] 王国法,巩师鑫,申凯. 煤矿智能安控技术体系与高质量发展对策[J]. 矿业安全与环保,2023,50(5):1−8.

WANG Guofa,GONG Shixin,SHEN Kai. Intelligent security control technology system and high-quality development countermeasures for coal mines[J]. Mining Safety & Environmental Protection,2023,50(5):1−8.

[4] 董书宁,刘再斌,程建远,等. 煤炭智能开采地质保障技术及展望[J]. 煤田地质与勘探,2021,49(1):21−31.

DONG Shuning,LIU Zaibin,CHENG Jianyuan,et al. Technologies and prospect of geological guarantee for intelligent coal mining[J]. Coal Geology & Exploration,2021,49(1):21−31.

[5] 彭苏萍. 建立和发展我国煤矿高产高效矿井地质保障系统[C]//中国煤炭学会矿井地质专业委员会年会报告. 上海:1992.

[6] 夏玉成. 论高产高效工作面地质保障系统[J]. 中国煤田地质,1997,9(增刊1):33−36.

XIA Yucheng. Ongeologic ensuring system of high-yield and efficient coalface[J]. Coal Geology of China,1997,9(Sup.1):33−36.

[7] 王安民. 浅析建设高产高效矿井的地质保障[J]. 煤田地质与勘探,1998,26(2):32−34.

WANG Anmin. The geological guarantee in construction of high-producing and high-efficient mines[J]. Coal Geology & Exploration,1998,26(2):32−34.

[8] 彭苏萍. 中国煤矿高产高效矿井地质保障系统[J]. 河北煤炭,1999(增刊1):1−4.

[9] 柴学周,岳建华. 高产高效矿井地质保障体系研究[J]. 能源技术与管理,2004,29(4):8−10.

CHAI Xuezhou,YUE Jianhua. Study on the geological securing system for the mine of high output and high profit[J]. Energy Technology and Management,2004,29(4):8−10.

[10] 郝贵,柴杨. 我国煤炭行业“黄金十年” 的成因分析[J]. 中国矿业,2013,22(2):17−19.

HAO Gui,CHAI Yang. Analysis of the “ten golden years” of coal industry in China[J]. China Mining Magazine,2013,22(2):17−19.

[11] 胡省三,成玉琪. 21世纪前期我国煤炭科技重点发展领域探讨[J]. 煤炭学报,2005,30(1):1−7.

HU Shengsan,CHENG Yuqi. Discussions on key development fields of China’s coal science and technology at early stage of 21st Century[J]. Journal of China Coal Society,2005,30(1):1−7.

[12] 董书宁. 煤矿安全高效生产地质保障的新技术新装备[J]. 中国煤炭,2020,46(9):15−23.

DONG Shuning. New technology and equipment of geological guarantee for safe and efficient production in coal mine[J]. China Coal,2020,46(9):15−23.

[13] 刘业娇,袁亮,薛俊华,等. 2007—2016年全国煤矿瓦斯灾害事故发生规律分析[J]. 矿业安全与环保,2018,45(3):124−128.

LIU Yejiao,YUAN Liang,XUE Junhua,et al. Analysis on the occurrence law of gas disaster accidents in coal mine from 2007 to 2016[J]. Mining Safety & Environmental Protection,2018,45(3):124−128.

[14] 夏玉成. 煤矿区地质环境承载能力及其评价指标体系研究[J]. 煤田地质与勘探,2003,31(1):5−8.

XIA Yucheng. Bearing capacity of geological environment in coal-mining area and its assessment index system[J]. Coal Geology & Exploration,2003,31(1):5−8.

[15] 薛永安,邹友峰,张文志,等. 基于SVM的地下采煤区沉陷灾害发育敏感性分区研究[J]. 煤田地质与勘探,2022,50(10):108−118.

XUE Yong’an,ZOU Youfeng,ZHANG Wenzhi,et al. SVM-based sensitivity zoning of subsidence disaster development in the underground coal mining areas[J]. Coal Geology & Exploration,2022,50(10):108−118.

[16] 夏玉成,杜荣军,孙学阳,等. 陕北煤田生态潜水保护与矿井水害预防对策[J]. 煤炭科学技术,2016,44(8):39−45.

XIA Yucheng,DU Rongjun,SUN Xueyang,et al. Countermeasures of ecologic phreatic water protection and mine water disaster prevention in northern Shaanxi Coalfield[J]. Coal Science and Technology,2016,44(8):39−45.

[17] 袁亮,张平松. 煤炭精准开采地质保障技术的发展现状及展望[J]. 煤炭学报,2019,44(8):2277−2284.

YUAN Liang,ZHANG Pingsong. Development status and prospect of geological guarantee technology for precise coal mining[J]. Journal of China Coal Society,2019,44(8):2277−2284.

[18] 许献磊,马正,陈令洲. 煤矿地质灾害隐患透明化探测技术进展与思考[J]. 绿色矿山,2023(1):56−69.

XU Xianlei,MA Zheng,CHEN Lingzhou. Progress and thinking of transparent detection technology for hidden geological hazards in coal mines[J]. Journal of Green Mine,2023(1):56−69.

[19] 许家林,鞠金峰,轩大洋,等. 煤矿全生命周期绿色开采研究展望[J]. 绿色矿山,2023(1):79−90.

XU Jialin,JU Jinfeng,XUAN Dayang,et al. Prospects for green mining research of coal mine life cycle[J]. Journal of Green Mine,2023(1):79−90.

[20] 刘峰,郭林峰,张建明,等. 煤炭工业数字智能绿色三化协同模式与新质生产力建设路径[J]. 煤炭学报,2024,49(1):1−15.

LIU Feng,GUO Linfeng,ZHANG Jianming,et al. Synergistic mode of digitalization-intelligentization-greeniation of the coal industry and it’s path of building new coal productivity[J]. Journal of China Coal Society,2024,49(1):1−15.

[21] 贾建称,贾茜,桑向阳,等. 我国煤矿地质保障系统建设30年:回顾与展望[J]. 煤田地质与勘探,2023,51(1):86−106.

JIA Jianchen,JIA Qian,SANG Xiangyang,et al. Review and prospect of coal mining geological guarantee system in China during 30 years of construction[J]. Coal Geology & Exploration,2023,51(1):86−106.

[22] 段中会,苗霖田,张建军,等. 煤炭地质云及数字煤矿地质保障系统研发与应用[R]. 西安:陕西省煤田地质集团有限公司,2018.

[23] 刘再斌,刘程,刘文明,等. 透明工作面多属性动态建模技术[J]. 煤炭学报,2020,45(7):2628−2635.

LIU Zaibin,LIU Cheng,LIU Wenming,et al. Multi-attribute dynamic modeling technique for transparent working face[J]. Journal of China Coal Society,2020,45(7):2628−2635.

[24] 国家能源局. 煤矿智能化标准体系建设指南:国能发科技〔2024〕18号[S]. 北京:国家能源局,2024-03-13.

[25] 赵兵朝,冯杰,赵阳,等. 覆岩导水裂隙带发育高度动态演化规律研究[J]. 煤矿安全,2024,55(2):176−183.

ZHAO Bingchao,FENG Jie,ZHAO Yang,et al. Study on dynamic evolution law of development height of overburden water-flowing fractured zone[J]. Safety in Coal Mines,2024,55(2):176−183.

[26] 高家明,夏永学,杨光宇,等. 复合构造区域煤岩体应力分布及冲击地压危险性评价[J]. 工矿自动化,2021,47(3):14−19.

GAO Jiaming,XIA Yongxue,YANG Guangyu,et al. The stress distribution of coal and rock mass and the risk evaluation of rock burst in the composite structure area[J]. Industry and Mine Automation,2021,47(3):14−19.

[27] FENNER M,CROSAS M,GRETHE J S,et al. A data citation roadmap for scholarly data repositories[J]. Scientific Data,2019,6(1):28.

[28] 常立新,廉永彪,廉永海. 论人工智能背景下地质资料服务模式转型[J]. 自然资源信息化,2024(2):23−28.

CHANG Lixin,LIAN Yongbiao,LIAN Yonghai. Study on the transformation of geological data service models under the background of artificial intelligence[J]. Natural Resources Informatization,2024(2):23−28.

[29] YANG Zhiqiang,QI Wenwen,XU Chong,et al. Exploring deep learning for landslide mapping:A comprehensive review[J]. China Geology,2024,7(2):330−350.

[30] 何文娜,朱长青,李仰春,等. 基于ArcGIS的智能地质图综合[J]. 地球物理学进展,2020,35(2):728−734.

HE Wenna,ZHU Changqing,LI Yangchun,et al. Intelligent geological map generalization based on ArcGIS[J]. Progress in Geophysics,2020,35(2):728−734.

[31] 李仰春,王永志,陈圆圆,等. 智绘地质:新一代智能化地质编图模式及应用[J]. 地质通报,2020,39(6):861−870.

LI Yangchun,WANG Yongzhi,CHEN Yuanyuan,et al. Intelligent geological mapping:A novel pattern for smart geological compilation[J]. Geological Bulletin of China,2020,39(6):861−870.

[32] 李杏龙,文广超,谢洪波. 矿井瓦斯地质图辅助编图方法研究[J]. 煤炭技术,2022,41(2):117−120.

LI Xinglong,WEN Guangchao,XIE Hongbo. Research on auxiliary mapping method of mine gas-geological map[J]. Coal Technology,2022,41(2):117−120.

[33] 夏玉成,王锐,马丽. 矿井地质灾害要素与地质灾源体辨识评价[J]. 中国煤炭地质,2019,31(2):51−55.

XIA Yucheng,WANG Rui,MA Li. Coalmine geological hazard elements and geological disaster source bodies identification assessment[J]. Coal Geology of China,2019,31(2):51−55.

[34] 蒋必辞,程建远,李萍,等. 基于钻孔雷达的透明工作面构建方法[J]. 煤田地质与勘探,2022,50(1):128−135.

JIANG Bici,CHENG Jianyuan,LI Ping,et al. Construction method of transparent working face based on borehole radar[J]. Coal Geology & Exploration,2022,50(1):128−135.

[35] 李忠辉,王恩元,刘晓斐,等. 煤矿突出动力灾害声电瓦斯智能监测预警技术与装备[R]. 徐州:中国矿业大学,2019.

[36] 刘程,孙东玲,邓飞,等. 煤矿多灾害智能防治与智能监控技术[J]. 智能矿山,2022,3(7):105−114.

[37] 储栋. 基于无人机的矿区地表特征点云提取方法及变形监测研究[D]. 淮南:安徽理工大学,2024.

CHU Dong. Research on the method of extracting surface feature point clouds and deformation monitoring in mining areas based on drones[D]. Huainan:Anhui University of Science & Technology,2024.

[38] 苏宇,汤伏全,李景祥,等. 矿山采动地表裂缝智能识别的YOLOv7模型改进研究[J]. 煤矿安全,2024,55(4):169−176.

SU Yu,TANG Fuquan,LI Jingxiang,et al. Improvement of YOLOv7 model for intelligent recognition of mining surface cracks[J]. Safety in Coal Mines,2024,55(4):169−176.

[39] 蔡秋欢. 基于GPS与InSAR数据的矿区地表形变分析与研究[D]. 呼和浩特:内蒙古工业大学,2023.

CAI Qiuhuan. Analysis and research on surface deformation of mining area based on GPS and InSAR data[D]. Hohhot:Inner Mongolia University of Tehchnology,2023.

[40] 孙学阳,夏玉成. 煤矿区构造环境内涵及类型划分[J]. 煤田地质与勘探,2015,43(4):79−84.

SUN Xueyang,XIA Yucheng. Connotation of tectonic setting in coal area and its type division[J]. Coal Geology & Exploration,2015,43(4):79−84.

[41] 吴群英,彭捷,迟宝锁,等. 神南矿区煤炭绿色开采的水资源监测研究[J]. 煤炭科学技术,2021,49(1):304−311.

WU Qunying,PENG Jie,CHI Baosuo,et al. Research on water resources monitoring of green coal mining in Shennan Mining Area[J]. Coal Science and Technology,2021,49(1):304−311.

[42] 范立民,孙魁,李成,等. 西北大型煤炭基地地下水监测背景、思路及方法[J]. 煤炭学报,2020,45(1):317−329.

FAN Limin,SUN Kui,LI Cheng,et al. Background,thought and method of groundwater monitoring in large coal base of northwest China[J]. Journal of China Coal Society,2020,45(1):317−329.

[43] 宋子岭,祁文辉,范军富,等. 大型露天煤矿绿色开采评价体系研究[J]. 安全与环境学报,2017,17(3):1177−1182.

SONG Ziling,QI Wenhui,FAN Junfu,et al. On the establishment of the evaluation system for green mining in large openpit coal mines[J]. Journal of Safety and Environment,2017,17(3):1177−1182.

[44] 虎维岳,赵春虎. 基于充水要素的矿井水害类型三线图划分方法[J]. 煤田地质与勘探,2019,47(5):1−8.

HU Weiyue,ZHAO Chunhu. Trilinear chart classification method of mine water hazard type based on factors of water recharge[J]. Coal Geology & Exploration,2019,47(5):1−8.

[45] 苗霖田,夏玉成,段中会,等. 黄河中游榆神府矿区煤–岩–水–环特征及智能一体化技术[J]. 煤炭学报,2021,46(5):1521−1531.

MIAO Lintian,XIA Yucheng,DUAN Zhonghui,et al. Coupling characteristics and intelligent integration technology of coal-overlying rock-groundwater-ecological environment in Yu-Shen-Fu mining area in the middle reaches of the Yellow River[J]. Journal of China Coal Society,2021,46(5):1521−1531.

[46] 夏玉成,王佟. 煤炭开采地质条件量化预测技术及程序设计[M]. 西安:陕西科学技术出版社,2001.

[47] 李宏泽,丁海,詹润,等. 煤矿开采区块综合评价与判识研究:以口孜东矿13-1煤层为例[J]. 煤炭科技,2023,44(1):1−6.

LI Hongze,DING Hai,ZHAN Run,et al. Study on comprehensive evaluation and identification of coal mining blocks:Taking 13-1 coal seam of Kouzidong mine as an example[J]. Coal Science & Technology Magazine,2023,44(1):1−6.

[48] 孙学阳,张齐,夏玉成,等. 韩城矿区煤炭资源有利开采区块辨识的原理与方法[J]. 煤炭科学技术,2020,48(11):232−240.

SUN Xueyang,ZHANG Qi,XIA Yucheng,et al. Principle and methods of identifying favorable mining blocks of coal resources in Hancheng Mining Area[J]. Coal Science and Technology,2020,48(11):232−240.

[49] 王国法,张建中,薛国华,等. 煤矿回采工作面智能地质保障技术进展与思考[J]. 煤田地质与勘探,2023,51(2):12−26.

WANG Guofa,ZHANG Jianzhong,XUE Guohua,et al. Progress and reflection of intelligent geological guarantee technology in coal mining face[J]. Coal Geology & Exploration,2023,51(2):12−26.

[50] 毛善君. 灰色地理信息系统:动态修正地质空间数据的理论和技术[J]. 北京大学学报(自然科学版),2002,38(4):556−562.

MAO Shanjun. Gray geographical information system:The theory and technology of correct geological spatial data dynamically[J]. Acta Scicentiarum Naturalum Universitis Pekinesis,2002,38(4):556−562.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.