•  
  •  
 

Coal Geology & Exploration

Abstract

Objective The exploration and assessment of low-carbon, zero-emission, and maximized utilization of coal resources, emerge as a focus of coal geology in the 21st century. [Research Advances] Based on the research content of coals and coal geology, along with the domestic and international development trends of clean coal technology (CCT), this study defines clean coal geology in the broad and narrow sense. Clean coal geology in the narrow sense focuses on the geological and geochemical issues related to efficiency enhancement and emission reduction in coal processing and utilization. In contrast, clean coal geology in the broad sense emphasizes efficiency enhancement and emission reduction throughout the coal life cycle, involving the exploration, exploitation, and utilization of coals, as well as relevant ecological restoration. This study summarizes the compositions and distributions of beneficial and harmful components in coals and analyzes the geologic factors affecting CCT, which are primarily associated with endogenetic and exogenetic geological processes during coal formation and involve tectonics, metamorphism, volcanic eruption, magmatic intrusion, aeolian-fluvial transport and deposition, redox reactions, and groundwater. Furthermore, this study provides a comprehensive overview of the current status of research on the clean assessment, clean processing, conversion, and utilization of coal resources. Additionally, this study reviews the advances in research on China's clean coal geology, categorizing them into five stages: germination, exploration, maturity, establishment, and expansion. [Issues and Prospects] This study proposes some scientific and technical problems concerning coal formation, organic/inorganic elements, minerals, and clean assessment, positing that future advancements in chemistry, physics, biology, and big data/artificial intelligence (AI) will bring opportunities for the further development of clean coal geology and its applications in large-scale engineering. In the next decade, important research and development directions will include the spatiotemporal distribution of clean coals; the green, intelligent, quality-based combined production of paragenetic and associated minerals like coal gas; clean coal gasification; coal-based novel materials; underground coal-to-chemicals, and ecological restoration. It is advisable to continuously pay attention to the innovative research achievements in these aspects.

Keywords

clean coal geology, influence factor, processing conversion and utilization, environment, research status, development direction, China

DOI

10.12363/issn.1001-1986.24.10.0621

Reference

[1] 国家发展和改革委员会. 关于加强煤炭清洁高效利用的意见(发改运行〔2024〕1345号)[EB/OL]. (2024-09-11) [2024-10-07]. https://www.gov.cn/zhengce/zhengceku/202410/content_6978315.htm.

[2] 中国政府网. “十四五”现代能源体系这样建[EB/OL]. (2022-03-24) [2024-10-11]. https://www.gov.cn/zhengce/2022-03/24/content_5680965.htm.

[3] 王双明,申艳军,宋世杰,等. “双碳”目标下煤炭能源地位变化与绿色低碳开发[J]. 煤炭学报,2023,48(7):2599−2612.

WANG Shuangming,SHEN Yanjun,SONG Shijie,et al. Change of coal energy status and green and low–carbon development under the “dual carbon” goal[J]. Journal of China Coal Society,2023,48(7):2599−2612.

[4] BP. 2024/73rd edition statistical review of world energy[R]. London:Energy Institute,2024.

[5] 中华人民共和国自然资源部. 中国矿产资源报告[R]. 北京:地质出版社,2024.

[6] 谢克昌. 煤炭角色再认识[EB/OL]. (2015-02-27) [2024-10-11]. http://www.360doc.com/content/15/0227/02/19907507_451105003.shtml.

[7] 孙旭东,张博,彭苏萍. 我国洁净煤技术2035发展趋势与战略对策研究[J]. 中国工程科学,2020,22(3):132−140.

SUN Xudong,ZHANG Bo,PENG Suping. Development trend and strategic countermeasures of clean coal technology in China toward 2035[J]. Strategic Study of CAE,2020,22(3):132−140.

[8] 谢克昌. 新型能源体系发展背景下煤炭清洁高效转化的挑战及途径[J]. 煤炭学报,2024,49(1):47−56.

XIE Kechang. Develop new energy system and promote clean and efficient conversion of coal[J]. Journal of China Coal Society,2024,49(1):47−56.

[9] 中国大百科全书总编辑委员会. 中国大百科全书:地质学[M]. 北京:中国大百科全书出版社,1993.

[10] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 中国煤炭分类:GB/T 5751—2009[S]. 北京:中国标准出版社,2009.

[11] International Organization for standardization. Classification of coals:ISO 11760:2018[S]. 2nd ed Switzerland:2018.

[12] ALPERN B,LEMOS DE SOUSA M J. Documented international enquiry on solid sedimentary fossil fuels;coal:Definitions,classifications,reserves–resources,and energy potential[J]. International Journal of Coal Geology,2002,50(1/2/3/4):3−41.

[13] TAYLOR G H,TEICHMULLER M,DAVIS A,et al. Organic petrology[M]. Berlin:Gebrüder Borntraeger Press,1998.

[14] FINKELMAN R B,DAI Shifeng,FRENCH D. The importance of minerals in coal as the hosts of chemical elements:A review[J]. International Journal of Coal Geology,2019,212:103251.

[15] DAI Shifeng,HOWER J C,FINKELMAN R B,et al. Organic associations of non–mineral elements in coal:A review[J]. International Journal of Coal Geology,2020,218:103347.

[16] DAI Shifeng,BECHTEL A,EBLE C F,et al. Recognition of peat depositional environments in coal:A review[J]. International Journal of Coal Geology,2020,219:103383.

[17] DAI Shifeng,FINKELMAN R B,HOWER J C,et al. Inorganic geochemistry of coal[M]. Amsterdam:Elsevier Scientific Publishing Company,2023.

[18] ABELSON P H. Technologies for clean use of coal[J]. Science,1985,229(4716):819.

[19] ABELSON P H. Clean coal technology[J]. Science,1990,250(4986):1317.

[20] 郑楚光. 洁净煤技术[M]. 武汉:华中理工大学出版社,1996.

[21] 吴占松,马润田,赵满成,等. 煤炭清洁有效利用技术[M]. 北京:化学工业出版社,2007.

[22] 徐振刚,曲思建. 中国洁净煤技术[M]. 北京:应急管理出版社,2012.

[23] PETERS D C. Geology in coal resource utilization[M]. Tulsa:American Association of Petroleum Geologists,1991.

[24] MELIKOGLU M. Clean coal technologies:A global to local review for Turkey[J]. Energy Strategy Reviews,2018,22:313−319.

[25] 唐书恒,秦勇,姜尧发,等. 中国洁净煤地质研究[M]. 北京:地质出版社,2006.

[26] 杨起,韩德馨. 中国煤田地质学[M]. 北京:煤炭工业出版社,1979.

[27] 黄宗理,张良弼. 地球科学大辞典:基础学科卷[M]. 北京:地质出版社,2006.

[28] 杨锡禄,周国铨. 中国煤炭工业百科全书:地质•测量卷[M]. 北京:煤炭工业出版社,1996.

[29] THOMAS L. Coal geology,3rd edition[M]. New Jersey:Wiley–Blackwell,2020.

[30] 秦勇. 世纪之交的煤田地质学科与创新性人才培养[J]. 中国地质教育,1999(2):18−21.

QIN Yong. Coalfield geology and innovative talent cultivation at the turn of the century[J]. Chinese Geological Education,1999(2):18−21.

[31] 曹代勇,王佟,王丹,等. 煤炭地质学:涵义与发展趋势[J]. 煤炭学报,2010,35(5):765−769.

CAO Daiyong,WANG Tong,WANG Dan,et al. Coal geology:Its meaning and development trend[J]. Journal of China Coal Society,2010,35(5):765−769.

[32] XU Shuishi,CHENG Aiguo,CAO Daiyong. The status quo and outlook of Chinese coal geology and exploration technologies[J]. Acta Geologica Sinica,2010,82(3):697−708.

[33] WANG Xiaoshuai,TANG Yuegang,WANG Shaoqing,et al. Clean coal geology in China:Research advance and its future[J]. International Journal of Coal Science & Technology,2020,7(2):299−310.

[34] SUÁREZ–RUIZ I,CRELLING J C. Applied coal petrology[M]. Amsterdam:Elsevier Scientific Publishing Company,2008.

[35] 韩德馨. 中国煤岩学[M]. 徐州:中国矿业大学出版社,1996.

[36] 斯塔赫. E,等. 斯塔赫煤岩学教程[M]. 杨起,等,译. 北京:煤炭工业出版社,1990.

[37] 杨永宽. 中国煤岩学图鉴[M]. 徐州:中国矿业大学出版社,1996.

[38] 陈佩元,孙达三,丁丕训,等. 中国煤岩图鉴[M]. 北京:煤炭工业出版社,1996.

[39] 李河名,费淑英. 中国煤的煤岩煤质特征及变质规律[M]. 北京:地质出版社,1996.

[40] 秦勇. 中国高煤级煤的显微岩石学特征及结构演化[M]. 徐州:中国矿业大学出版社,1994.

[41] International Committee for Coal and Organic Petrology (ICCP). The new vitrinite classification (ICCP system 1994)[J]. Fuel,1998,77(5):349−358.

[42] International Committee for Coal and Organic Petrology (ICCP). The new inertinite classification (ICCP system 1994)[J]. Fuel,2001,80(4):459−471.

[43] SÝKOROVÁ I,PICKEL W,CHRISTANIS K,et al. Classification of huminite (ICCP system 1994)[J]. International Journal of Coal Geology,2005,62(1/2):85−106.

[44] PICKEL W,KUS J,FLORES D,et al. Classification of liptinite (ICCP system 1994)[J]. International Journal of Coal Geology,2017,169:40−61.

[45] 代世峰,唐跃刚,姜尧发,等. 煤的显微组分定义与分类(ICCP system 1994)解析I:镜质体[J]. 煤炭学报,2021,46(6):1821−1832.

DAI Shifeng,TANG Yuegang,JIANG Yaofa,et al. An in–depth interpretation of definition and classification of macerals in coal (ICCP system 1994) for Chinese researchers,I:Vitrinite[J]. Journal of China Coal Society,2021,46(6):1821−1832.

[46] 代世峰,王绍清,唐跃刚,等. 煤的显微组分定义与分类(ICCP system 1994)解析II:惰质体[J]. 煤炭学报,2021,46(7):2212−2226.

DAI Shifeng,WANG Shaoqing,TANG Yuegang,et al. An in–depth interpretation of definition and classification of macerals in coal (ICCP system 1994) for Chinese researchers,II:Inertinite[J]. Journal of China Coal Society,2021,46(7):2212−2226.

[47] 代世峰,刘晶晶,唐跃刚,等. 煤的显微组分定义与分类(ICCP system 1994)解析III:腐植体[J]. 煤炭学报,2021,46(8):2623−2636.

DAI Shifeng,LIU Jingjing,TANG Yuegang,et al. An in–depth interpretation of definition and classification of macerals in coal (ICCP system 1994) for Chinese researchers,III:Huminite[J]. Journal of China Coal Society,2021,46(8):2623−2636.

[48] 代世峰,赵蕾,唐跃刚,等. 煤的显微组分定义与分类(ICCP system 1994)解析IV:类脂体[J]. 煤炭学报,2021,46(9):2965−2983.

DAI Shifeng,ZHAO Lei,TANG Yuegang,et al. An in–depth interpretation of definition and classification of macerals in coal (ICCP system 1994) for Chinese researchers,IV:Liptinite[J]. Journal of China Coal Society,2021,46(9):2965−2983.

[49] DAI Shifeng,WANG Xibo,ZHAO Lei. Mineral matter and trace elements in coal[M]. Basel:MDPI,2017.

[50] ASTM International. ASTM D388–19. Standard classification of coals by rank[S]. West Conshohocken:Annual Book of ASTM Standards,2019.

[51] 张双全. 煤化学[M]. 徐州:中国矿业大学出版社,2004.

[52] 张香兰,张军. 煤化学[M]. 北京:煤炭工业出版社,2012.

[53] 白浚仁. 煤质学[M]. 北京:地质出版社,1989.

[54] 袁三畏. 中国煤质论评[M]. 北京:煤炭工业出版社,1999.

[55] 唐跃刚,代世峰,唐真. 乌达矿区煤质特性与动态评价研究[M]. 徐州:中国矿业大学出版社,1999.

[56] 唐跃刚,王绍清,杨淑婷,等. 中国煤质分布规律:全国煤炭资源潜力评价分报告之四[R]. 河北:中国煤炭地质总局第一勘探局,2013.

[57] 陈鹏. 中国煤炭性质、分类和利用[M]. 北京:化学工业出版社,2007.

[58] 国家市场监督管理总局,中国国家标准化管理委员会. 煤炭质量分级 第1部分:灰分:GB/T 15224. 1—2010[S]. 北京:中国标准出版社,2010.

[59] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 煤炭质量分级 第2部分:硫分:GB/T 15224.2—2010[S]. 北京:中国标准出版社,2010.

[60] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 煤炭质量分级 第3部分:发热量:GB/T 15224.3—2010[S]. 北京:中国标准出版社,2010.

[61] KREVELEN D W V. Graphical–statistical method for the study of structure and reaction processes of coal[J]. Fuel,1950,29:269−284.

[62] KREVELEN D W V. Coal:Typology,physics,chemistry,constitution[M]. New York:Elsevier Science Publishers Company,1993.

[63] MATHEWS J P,CHAFFEE A L. The molecular representations of coal:A review[J]. Fuel,2012,96:1−14.

[64] 谢克昌. 煤的结构与反应性[M]. 北京:科学出版社,2002.

[65] 刘振宇. 煤化学的前沿与挑战:结构与反应[J]. 中国科学:化学,2014,44(9):1431−1439.

LIU Zhenyu. Advancement in coal chemistry:Structure and reactivity[J]. Scientia Sinica(Chimica),2014,44(9):1431−1439.

[66] SHINN J H. From coal to single–stage and two–stage products:A reactive model of coal structure[J]. Fuel,1984,63(9):1187−1196.

[67] GIVEN P H,MARZEC A,BARTON W A,et al. The concept of a mobile or molecular phase within the macromolecular network of coals:A debate[J]. Fuel,1986,65(2):155−163.

[68] 秦匡宗,郭绍辉,李术元. 煤结构的新概念与煤成油机理的再认识[J]. 科学通报,1998,43(18):1912−1918.

QIN Kuangzong,GUO Shaohui,LI Shuyuan. New concepts of coal structure and rethinking of the mechanism of coal–to–oil[J]. Chinese Science Bulletin,1998,43(18):1912−1918.

[69] 秦志宏. 煤有机质溶出行为与煤嵌布结构模型[M]. 徐州:中国矿业大学出版社,2008.

[70] 秦志宏. 煤嵌布结构模型理论[J]. 中国矿业大学学报,2017,46(5):939−958.

QIN Zhihong. Theory of coal embedded structure model[J]. Journal of China University of Mining & Technology,2017,46(5):939−958.

[71] A. M. 久利马里耶夫,R. C. 戈洛温,C. R. 加加林. 煤结构:化学指数分类与应用[M]. 聂书岭,马风云,译. 北京:化学工业出版社,2013.

[72] 唐跃刚,王绍清,郭鑫,等. 煤有机地球化学研究进展与展望[J]. 矿物岩石地球化学通报,2021,40(3):574−596.

TANG Yuegang,WANG Shaoqing,GUO Xin,et al. Researches on the organic geochemistry of coal:Progresses and prospects[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2021,40(3):574−596.

[73] TISSOT B P,WELTE D H. Kerogen:Composition and classification[M]. Berlin:Springer Press,1978.

[74] 蒂索 B P,威尔特 D H. 石油形成与分布[M]. 徐永元,徐濂,郝石生,等,译. 北京:石油工业出版社,1989.

[75] NAAFS B D A,INGLIS G N,BLEWETT J,et al. The potential of biomarker proxies to trace climate,vegetation,and biogeochemical processes in peat:A review[J]. Global and Planetary Change,2019,179:57−79.

[76] WARD C R. Analysis and significance of mineral matter in coal seams[J]. International Journal of Coal Geology,2002,50(1-4):135−168.

[77] WARD C R. Analysis,origin and significance of mineral matter in coal:An updated review[J]. International Journal of Coal Geology,2016,165:1−27.

[78] 孙景信,JERVIS R E. 煤中微量元素及其在燃烧过程中的分布特征[J]. 中国科学(A辑),1986(12):1287−1294.

SUN Jingxin,JERVIS R E. Distribution characteristics of trace elements in coal during combustion[J]. Scientia Sinica (Series A),1986(12):1287−1294.

[79] 陈冰如,杨绍晋,钱琴芳,等. 中国煤矿样中砷、硒、铬、铀、钍元素的含量分布[J]. 环境科学,1989,10(6):23−26.

CHEN Bingru,YANG Shaojin,QIAN Qinfang,et al. Content distribution of As,Se,Cr,U and Tu elements in Chinese coal samples[J]. Environmental Science,1989,10(6):23−26.

[80] 陈冰如,钱琴芳,杨亦男,等. 我国一O七个煤矿样中微量元素的浓度分布[J]. 科学通报,1985(1):27−29.

CHEN Bingru,QIAN Qinfang,YANG Yinan,et al. Concentration distribution of trace elements in 107 coal mine samples from China[J]. Chinese Science Bulletin,1985(1):27−29.

[81] 任德贻,赵峰华,张军营,等. 煤中有害微量元素富集的成因类型初探[J]. 地学前缘,1999,6(增刊1):17−22.

REN Deyi,ZHAO Fenghua,ZHANG Junying,et al. A preliminary study on genetic type of enrichment for hazardous minor and trace elements in coal[J]. Earth Science Frontiers,1999,6(Sup.1):17−22.

[82] 任德贻,赵峰华,代世峰,等. 煤的微量元素地球化学[M]. 北京:科学出版社,2006.

[83] REN Deyi,ZHAO Fenghua,WANG Yunquan,et al. Distributions of minor and trace elements in Chinese coals[J]. International Journal of Coal Geology,1999,40(2/3):109−118.

[84] 王运泉,任德贻. 煤中微量元素研究的进展[J]. 煤田地质与勘探,1994,22(4):16−20.

WANG Yunquan,REN Deyi. Progress in the study of trace elements in coal[J]. Coal Geology & Exploration,1994,22(4):16−20.

[85] 白向飞. 中国煤中微量元素分布赋存特征及其迁移规律试验研究[D]. 北京:煤炭科学研究总院,2003.

BAI Xiangfei. The distributions,modes of occurrence and volatility of trace elements in coals of China[D]. Beijing:China Coal Research Institute,2003.

[86] 唐修义,黄文辉. 中国煤中微量元素[M]. 北京:商务印书馆,2004.

[87] DAI Shifeng,REN Deyi,CHOU Chen–Lin,et al. Geochemistry of trace elements in Chinese coals:A review of abundances,genetic types,impacts on human health,and industrial utilization[J]. International Journal of Coal Geology,2012,94:3−21.

[88] DAI Shifeng,FINKELMAN R B,FRENCH D,et al. Modes of occurrence of elements in coal:A critical evaluation[J]. Earth–Science Reviews,2021,222:103815.

[89] BOUŠKA V. Geochemistry of coal. Coal science and technology 1[M]. Amsterdam:Elsevier Scientific Publishing Company,1981.

[90] GLUSKOTER H J. Mineral matter and trace elements in coal[M]//BABU S P. Trace Elements in Fuel. Washington:American Chemical Society,1975:1–22.

[91] FINKELMAN R B. Trace and minor elements in coal[M]//ENGEL M H,MACKO S A. Organic geochemistry. New York:Plenum Press,1993:593–607.

[92] FINKELMAN R B,PALMER C A,WANG Peipei. Quantification of the modes of occurrence of 42 elements in coal[J]. International Journal of Coal Geology,2018,185:138−160.

[93] SWAINE D J. Why trace elements are important[J]. Fuel Processing Technology,2000,65/66:21–33.

[94] SWAINE D J,GOODARZI F. Environmental aspects of trace elements in coal[M]. Boston:Kluwer Academic Publishers,1995.

[95] SWAINE D J. Trace elements in coal[M]. Sydney:Butterworth Publishers,1990.

[96] KETRIS M P,YUDOVICH Y E. Estimations of Clarkes for Carbonaceous biolithes:World averages for trace element contents in black shales and coals[J]. International Journal of Coal Geology,2009,78(2):135−148.

[97] DAI Shifeng,WANG Peipei,WARD C R,et al. Elemental and mineralogical anomalies in the coal–hosted Ge ore deposit of Lincang,Yunnan,southwestern China:Key role of N2–CO2–mixed hydrothermal solutions[J]. International Journal of Coal Geology,2015,152:19−46.

[98] 傅家谟,刘德汉,盛国英. 煤成烃地球化学[M]. 北京:科学出版社,1990.

[99] 黄第藩,华阿新,王铁冠,等. 煤成油地球化学新进展[M]. 北京:石油工业出版社,1992.

[100] 秦勇,袁亮,胡千庭,等. 我国煤层气勘探与开发技术现状及发展方向[J]. 煤炭科学技术,2012,40(10):1−6.

QIN Yong,YUAN Liang,HU Qianting,et al. Status and development orientation of coal bed methane exploration and development technology in China[J]. Coal Science and Technology,2012,40(10):1−6.

[101] 秦勇,申建,史锐. 中国煤系气大产业建设战略价值与战略选择[J]. 煤炭学报,2022,47(1):371−387.

QIN Yong,SHEN Jian,SHI Rui. Strategic value and choice on construction of large CMG industry in China[J]. Journal of China Coal Society,2022,47(1):371−387.

[102] 秦勇. 煤系气地质调查若干问题思考与探讨[J]. 中国地质,2023,50(5):1355−1374.

QIN Yong. Thinking and discussion for some problems of geological survey of coal measures gas[J]. Geology in China,2023,50(5):1355−1374.

[103] 曹代勇,刘天绩,王丹,等. 青海木里地区天然气水合物形成条件分析[J]. 中国煤炭地质,2009,21(9):3−6.

CAO Daiyong,LIU Tianji,WANG Dan,et al. Analysis of formation conditions of natural gas hydrate in Muli Coalfield,Qinghai Province[J]. Coal Geology of China,2009,21(9):3−6.

[104] 中国煤炭地质总局. 中国煤炭资源赋存规律与资源评价[M]. 北京:科学出版社,2016.

[105] TANG Yuegang,LI Ruiqing,WANG Shaoqing. Research progress and prospects of coal petrology and coal quality in China[J]. International Journal of Coal Science & Technology,2020,7(2):273−287.

[106] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 稀缺、特殊煤炭资源的划分与利用:GB/T 26128—2010[S]. 北京:中国标准出版社,2010.

[107] 国家发展改革委. 特殊和稀缺煤类开发利用管理暂行规定[J]. 中国煤炭,2012,38(12):68.

National Development and Reform Commission. Interim regulations on the development and utilization of special and scarce coal types[J]. China Coal,2012,38(12):68.

[108] 李正越,唐跃刚,乔军伟,等. 特殊和稀缺煤炭资源调查报告[R]. 北京:中国煤炭地质总局,2014.

[109] 曾勇. 中国西部地区特殊煤种及其综合开发与利用[J]. 煤炭学报,2001,26(4):337−340.

ZENG Yong. Special coal types in western China and their exploitation and utilization[J]. Journal of China Coal Society,2001,26(4):337−340.

[110] 王绍清,唐跃刚,李正越,等. 我国典型特殊煤种特性及利用研究[J]. 洁净煤技术,2015,21(1):32−36.

WANG Shaoqing,TANG Yuegang,LI Zhengyue,et al. Properties and utilization of typical coal types in China[J]. Clean Coal Technology,2015,21(1):32−36.

[111] 宁树正,张宁,吴国强,等. 我国特殊煤种研究进展[J]. 中国煤炭地质,2019,31(6):1−4.

NING Shuzheng,ZHANG Ning,WU Guoqiang,et al. Advances in special coal species research in China[J]. Coal Geology of China,2019,31(6):1−4.

[112] 乔军伟,宁树正,秦云虎,等. 特殊用煤研究进展及工作前景[J]. 煤田地质与勘探,2019,47(1):49−55.

QIAO Junwei,NING Shuzheng,QIN Yunhu,et al. The research progress and work prospect of special purpose coal[J]. Coal Geology & Exploration,2019,47(1):49−55.

[113] 唐跃刚,郭亚楠,王绍清. 中国特殊煤种:树皮煤的研究进展[J]. 中国科学基金,2011,25(3):154−163.

TANG Yuegang,GUO Ya’nan,WANG Shaoqing. The Chinese typical coal type–bark coal:A review[J]. Science Foundation in China,2011,25(3):154−163.

[114] WANG Shaoqing,TANG Yuegang,SCHOBERT H H,et al. FTIR and 13C–NMR investigation of coal component of Late Permian coals from southern China[J]. Energy & Fuels,2011,25(12):‏5677–5672.

[115] WANG Shaoqing,TANG Yuegang,SCHOBERT H H,et al. FTIR and simultaneous TG/MS/FTIR study of Late Permian coals from southern China[J]. Journal of Analytical and Applied Pyrolysis,2013,100:75−80.

[116] 周国庆,姜尧发,颜跃进,等. 江西乐平树皮煤的显微煤岩类型研究[J]. 中国煤炭地质,2019,31(7):7−11.

ZHOU Guoqing,JIANG Yaofa,YAN Yuejin,et al. Study on bark coal microlithotype in Leping,Jiangxi[J]. Coal Geology of China,2019,31(7):7−11.

[117] MASTALERZ M,HOWER J C,CHEN Yanyan. Microanalysis of barkinite from Chinese coals of high volatile bituminous rank[J]. International Journal of Coal Geology,2015,141/142:103–108.

[118] 王绍清,唐跃刚,SCHOBERT H H. 树皮煤的性质及转化[M]. 北京:科学出版社,2018.

[119] KWIECINSKA B,PETERSEN H I. Graphite,semi–graphite,natural coke,and natural char classification (ICCP system)[J]. International Journal of Coal Geology,2004,57(2):99−116.

[120] 曹代勇,魏迎春,李阳,等. 煤系石墨鉴别指标厘定及分类分级体系构建[J]. 煤炭学报,2021,46(6):1833−1846.

CAO Daiyong,WEI Yingchun,LI Yang,et al. Determination of identification index and construction of classification and classification system of coal measures graphite[J]. Journal of China Coal Society,2021,46(6):1833−1846.

[121] 曹代勇,张鹤,董业绩,等. 煤系石墨矿产地质研究现状与重点方向[J]. 地学前缘,2017,24(5):317−327.

CAO Daiyong,ZHANG He,DONG Yeji,et al. Research status and key orientation of coal–based graphite mineral geology[J]. Earth Science Frontiers,2017,24(5):317−327.

[122] 刘钦甫,袁亮,李阔,等. 不同变质程度煤系石墨结构特征[J]. 地球科学,2018,43(5):1663−1669.

LIU Qinfu,YUAN Liang,LI Kuo,et al. Structure characteristics of different metamorphic grade coal–based graphites[J]. Earth Science,2018,43(5):1663−1669.

[123] 潘生杰,陈建玉,范飞,等. 低阶煤分质利用转化路线的现状分析及展望[J]. 洁净煤技术,2017,23(5):7−12.

PAN Shengjie,CHEN Jianyu,FAN Fei,et al. Present situation analysis and prospect of low rank coal quality–based utilization conversion route[J]. Clean Coal Technology,2017,23(5):7−12.

[124] 张亚婷,周安宁,张晓欠,等. 以太西无烟煤为前驱体制备煤基石墨烯的研究[J]. 煤炭转化,2013,36(4):57−61.

ZHANG Yating,ZHOU Anning,ZHANG Xiaoqian,et al. Preparation of the graphene from Taixi anthracite[J]. Coal Conversion,2013,36(4):57−61.

[125] HUAN Xuan,TANG Yuegang,XU Jingjie,et al. Structural characterization of graphenic material prepared from anthracites of different characteristics:A comparative analysis[J]. Fuel Processing Technology,2019,183:8−18.

[126] 唐跃刚,徐靖杰,郇璇,等. 云南小发路无烟煤基石墨烯制备与谱学表征[J]. 煤炭学报,2020,45(2):740−748.

TANG Yuegang,XU Jingjie,HUAN Xuan,et al. Preparation and spectroscopic characterization of coal–based graphene from anthracite in Xiaofalu,Yunnan,China[J]. Journal of China Coal Society,2020,45(2):740−748.

[127] SAIKIA B K,BORUAH R K,GOGOI P K. A X–ray diffraction analysis on graphene layers of Assam coal[J]. Journal of Chemical Sciences,2009,121(1):103−106.

[128] MA Pengliang,TANG Yuegang,LI Ruiqing,et al. Preparation and characteristic analysis of graphene based on coal macerals of different rank[J]. Fuel,2024,357:130004.

[129] SEREDIN V V,DAI Shifeng. Coal deposits as potential alternative sources for lanthanides and yttrium[J]. International Journal of Coal Geology,2012,94(5):67−93.

[130] 代世峰,任德贻,周义平,等. 煤型稀有金属矿床:成因类型、赋存状态和利用评价[J]. 煤炭学报,2014,39(8):1707−1715.

DAI Shifeng,REN Deyi,ZHOU Yiping,et al. Coal–hosted rare metal deposits:Genetic types,modes of occurrence,and utilization evaluation[J]. Journal of China Coal Society,2014,39(8):1707−1715.

[131] DAI Shifeng,FINKELMAN R B. Coal as a promising source of critical elements:Progress and future prospects[J]. International Journal of Coal Geology,2018,186:155−164.

[132] DAI Shifeng,YAN Xiaoyun,WARD C R,et al. Valuable elements in Chinese coals:A review[J]. International Geology Review,2018,60(5/6):590−620.

[133] 代世峰,赵蕾,魏强,等. 中国煤系中关键金属资源:富集类型与分布[J]. 科学通报,2020,65(33):3715−3729.

DAI Shifeng,ZHAO Lei,WEI Qiang,et al. Resources of critical metals in coal–bearing sequences in China:Enrichment types and distribution[J]. Chinese Science Bulletin,2020,65(33):3715−3729.

[134] 代世峰,刘池洋,赵蕾,等. 煤系中战略性金属矿产资源:意义和挑战[J]. 煤炭学报,2022,47(5):1743−1749.

DAI Shifeng,LIU Chiyang,ZHAO Lei,et al. Strategic metal resources in coal–bearing strata:Significance and challenges[J]. Journal of China Coal Society,2022,47(5):1743−1749.

[135] DAI Shifeng,ARBUZOV S I,CHEKRYZHOV I Y,et al. Metalliferous coals of Cretaceous Age:A review[J]. Minerals,2022,12(9):1154.

[136] JIU Bo,HUANG Wenhui,SPIRO B,et al. Distribution of Li,Ga,Nb,and REEs in coal as determined by LA–ICP–MS imaging:A case study from Jungar Coalfield,Ordos Basin,China[J]. International Journal of Coal Geology,2023,267:104184.

[137] 毛节华,许惠龙. 中国煤炭资源预测与评价[M]. 北京:科学出版社,1999.

[138] 杨舒婷. 中国煤炭资源洁净潜势评价研究[D]. 北京:中国矿业大学(北京),2015.

YANG Shuting. Cleaness potential evaluation study on china coal resource[D]. Beijing:China University of Mining & Technology (Beijing),2015.

[139] 李文华,翟炯. 中国煤中灰分的分布[J]. 煤炭加工与综合利用,1992(4):7−10.

LI Wenhua,ZHAI Jiong. Distribution of ash content in Chinese coal[J]. Coal Processing & Comprehensive Utilization,1992(4):7−10.

[140] WHITE D. Physiographic conditions attending the formation of coal[M]//WHITE D,THIESSEN R. The origin of coal. Washington:United States. Government Printing Office,1913,38:52–84.

[141] CASAGRANDE D J,IDOWU G,FRIEDMAN A,et al. H2S incorporation in coal precursors:Origins of organic sulphur in coal[J]. Nature,1979,282(5739):163−175.

[142] CASAGRANDE D J,NG L. Incorporation of elemental sulphur in coal as organic sulphur[J]. Nature,1979,282(5739):598−599.

[143] CASAGRANDE D J,SIEFERT K. Origins of sulfur in coal:Importance of the Ester Sulfate content of peat[J]. Science,1977,195(4279):675−676.

[144] ALTSCHULER Z S,SCHNEPFE M M,SILBER C C,et al. Sulfur diagenesis in everglades peat and origin of pyrite in coal[J]. Science,1983,221(4607):221−227.

[145] CALKINS W H. The chemical forms of sulfur in coal:A review[J]. Fuel,1994,73(4):475−484.

[146] SINNINGHE–DAMSTÉ J S,WHITE C M,GREEN J B,et al. Organosulfur compounds in sulfur–rich Raša coal[J]. Energy & Fuels,1999,13(3):728−738.

[147] GAYER R A,ROSE M,DEHMER J,et al. Impact of sulphur and trace element geochemistry on the utilization of a marine–influenced coal:Case study from the South Wales Variscan foreland basin[J]. International Journal of Coal Geology,1999,40(2/3):151−174.

[148] 陈鹏. 中国煤中硫的赋存特征及脱硫[J]. 煤炭转化,1994,17(2):1−9.

CHEN Peng. Characteristics and distribution of sulfur in Chinese coals and desulfurization[J]. Coal Conversion,1994,17(2):1−9.

[149] 李文华,翟炯. 中国煤中硫的分布及控制硫污染的对策[J]. 煤炭转化,1994,17(4):1−10.

LI Wenhua,ZHAI Jiong. The distribution of sulfur in Chinese coal and the means controlling sulfur pollution[J]. Coal Conversion,1994,17(4):1−10.

[150] REN Deyi,TANG Yuegang,LEI Jiajin. Study on regulations of sulfur occurrence and pyrite magnetism of Late Permian coals in southwestern China[J]. Journal of China University of Mining and Technology,1994,4(2):64−73.

[151] REN Deyi,TANG Yuegang,LEI Jiajin,et al. The study on regularities of sulfur occurrence and pyrite magnrtism of Late Permian coal in southwest China[C]//30th International Geological Congress (IGC). Beijing:International Geological Congress,1996:875–880.

[152] 周春光,杨起,康西栋,等. 煤中硫研究现状[J]. 煤田地质与勘探,1999,27(1):16−20.

ZHOU Chunguang,YANG Qi,KANG Xidong,et al. Development on the study of sulfur in coal[J]. Coal Geology & Exploration,1999,27(1):16−20.

[153] 周春光,杨起,康西栋,等. 华北晚古生代煤中黄铁矿形成世代的硫同位素证据[J]. 中国煤田地质,2000,12(1):19−22.

ZHOU Chunguang,YANG Qi,KANG Xidong,et al. Sulfur–isotope evidence of pyrite generation in coal of Late Palaeozoic in northern China[J]. Coal Geology of China,2000,12(1):19−22.

[154] 刘大锰,杨起,周春光,等. 华北晚古生代煤中黄铁矿赋存特征与地质成因研究[J]. 地球化学,1999,28(4):340−350.

LIU Dameng,YANG Qi,ZHOU Chunguang,et al. Occurrence and geological genesis of pyrites in Late Paleozoic coals in North China[J]. Geochimica,1999,28(4):340−350.

[155] 周诚林. 煤中硫的地质特征和洁净煤技术的发展[J]. 地学前缘,1999,6(增刊1):23−27.

ZHOU Chenglin. Geologic characteristics of sulfur in coals and development of the clean coal technologies[J]. Earth Science Frontiers,1999,6(Sup.1):23−27.

[156] CHOU Chenlin. Sulfur in coals:A review of geochemistry and origins[J]. International Journal of Coal Geology,2012,100:1−13.

[157] DAI Shifeng,REN Deyi,ZHOU Yiping,et al. Mineralogy and geochemistry of a superhigh–organic–sulfur coal,Yanshan Coalfield,Yunnan,China:Evidence for a volcanic ash component and influence by submarine exhalation[J]. Chemical Geology,2008,255(1/2):182−194.

[158] 唐跃刚,张会勇,彭苏萍,等. 中国煤中有机硫赋存状态、地质成因的研究[J]. 山东科技大学学报(自然科学版),2002,21(4):1−4.

TANG Yuegang,ZHANG Huiyong,PENG Suping,et al. Study on occurrence mode and geological genesis of organic sulfur in coal in China[J]. Journal of Shandong University of Science and Technology (Natural Science),2002,21(4):1−4.

[159] 唐跃刚,贺鑫,程爱国,等. 中国煤中硫含量分布特征及其沉积控制[J]. 煤炭学报,2015,40(9):1977−1988.

TANG Yuegang,HE Xin,CHENG Aiguo,et al. Occurrence and sedimentary control of sulfur in coals of China[J]. Journal of China Coal Society,2015,40(9):1977−1988.

[160] 罗陨飞,李文华,姜英,等. 中国煤中硫的分布特征研究[J]. 煤炭转化,2005,28(3):14−18.

LUO Yunfei,LI Wenhua,JIANG Ying,et al. Distribution of sulfur in coals of China[J]. Coal Conversion,2005,28(3):14−18.

[161] 胡军,郑宝山,王滨滨,等. 中国煤中有机硫的分布及其成因[J]. 煤田地质与勘探,2005,33(5):12−15.

HU Jun,ZHENG Baoshan,WANG Binbin,et al. Distribution and forming cause of organic sulfur in coals of China[J]. Coal Geology & Exploration,2005,33(5):12−15.

[162] 高连芬,刘桂建,CHOU Chen–Lin,等. 中国煤中硫的地球化学研究[J]. 矿物岩石地球化学通报,2005,24(1):79−87.

GAO Lianfen,LIU Guijian,CHOU Chen–Lin,et al. The study of sulfur geochemistry in Chinese coals[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2005,24(1):79−87.

[163] 汤达祯,杨起,周春光,等. 华北晚古生代成煤沼泽微环境与煤中硫的成因关系研究[J]. 中国科学(D辑:地球科学),2000,30(6):584−591.

TANG Dazhen,YANG Qi,ZHOU Chunguang,et al. Study on the relationship between the microenvironment of coal–forming swamp in Late Paleozoic north China and the origin of sulfur in coal[J]. Scientia Sinica(Terrae),2000,30(6):584−591.

[164] ZHAO Qiaojing,QIN Shenjun,ZHAO Cunliang,et al. Origin and geological implications of super high sulfur–containing polycyclic aromatic compounds in high–sulfur coal[J]. Gondwana Research,2021,96:219−231.

[165] ZHAO Qiaojing,QIN Shenjun,SHEN Wenchao,et al. Significant influence of different sulfur forms on sulfur–containing polycyclic aromatic compound formation in high–sulfur coals[J]. Fuel,2023,332:125999.

[166] 唐跃刚,任德贻. 煤中黄铁矿的成因研究[J]. 地质论评,1996,42(1):64−70.

TANG Yuegang,REN Deyi. The genesis of pyrites in coal[J]. Geological Review,1996,42(1):64−70.

[167] 唐跃刚. 四川晚二叠世煤中硫的赋存机制黄铁矿矿物学及其磁性研究[D]. 北京:中国矿业大学(北京),1993.

TANG Yuegang. Study on sulfur occuring mechanism,pyrite mineralogy and its magnetism of Late Permian coals in Sichuan Province,China[D]. Beijing:China University of Mining and Technology (Beijing),1993.

[168] 魏强,唐跃刚,李薇薇,等. 煤中有机硫结构研究进展[J]. 煤炭学报,2015,40(8):1911−1923.

WEI Qiang,TANG Yuegang,LI Weiwei,et al. Research advances on organic sulfur structures in coal[J]. Journal of China Coal Society,2015,40(8):1911−1923.

[169] CHEN Cong,TANG Yuegang,GUO Xin. Comparison of structural characteristics of high–organic–sulfur and low–organic–sulfur coal of various ranks based on FTIR and Raman spectroscopy[J]. Fuel,2022,310:122362.

[170] 陈骏,王鹤年. 地球化学[M]. 北京:科学出版社,2004.

[171] 赵峰华,任德贻,张军营,等. 煤中有害元素的研究现状及其对环境保护的意义[J]. 煤矿环境保护,1998,12(2):20−23.

ZHAO Fenghua,REN Deyi,ZHANG Junying,et al. Recent advance of study on hazardous elements in coal and significance for environmental protection[J]. Coal Mine Environment Protection,1998,12(2):20−23.

[172] 冯新斌,洪冰,倪建宇,等. 煤中部分潜在毒害微量元素在表生条件下的化学活动性[J]. 环境科学学报,1999,19(4):433−437.

FENG Xinbin,HONG Bing,NI Jianyu,et al. Chemical mobility of potentially toxic trace elements in coal at surface conditions[J]. Acta Scientiae Circumstantiae,1999,19(4):433−437.

[173] 冯新斌,洪业汤,倪建宇,等. 煤中潜在毒害元素分布的多元分析及其地球化学意义[J]. 矿物学报,1999,19(1):34−40.

FENG Xinbin,HONG Yetang,NI Jianyu,et al. Multivariable analysis on the distribution of potentially hazardous elements in coal and its geochemical significance[J]. Acta Mineralogica Sinica,1999,19(1):34−40.

[174] FINKELMAN R B,GROSS P M K. The types of data needed for assessing the environmental and human health impacts of coal[J]. International Journal of Coal Geology,1999,40(2-3):91−101.

[175] FINKELMAN R B. Modes of occurrence of environmentally– sensitive trace elements in coal[M]//SWAINE D J,GOODARZI F. Environmental aspects of trace elements in coal. Dordrecht:Kluwer Academic Publishers,1995:24–50.

[176] 赵峰华,任德贻. 燃煤产物中有害元素淋滤实验的研究现状[J]. 煤田地质与勘探,1998,26(4):14−17.

ZHAO Fenghua,REN Deyi. Study on leaching experiment of hazardous trace elements in coal–fired residues:Review[J]. Coal Geology & Exploration,1998,26(4):14−17.

[177] QUICK W J,IRONS R M A. Trace element partitioning during the firing of washed and untreated power station coals[J]. Fuel,2002,81(5):665−672.

[178] SELINUS O,ALLOWAY B,CENTENO J A,et al. Essentials of medical geology:Impacts of the natural environment on public health[M]. Amsterdam:Elsevier Scientific Publishing Company,2005.

[179] DE LORENZI O. Combustion engineering:A reference book on fuel burning and steam generation[M]. New York:Combustion Engineering–Superheater Inc,1951.

[180] MILLER B G. Clean coal engineering technology[M]. Amsterdam:Butterworth–Heinemann of Elsevier,2011.

[181] SINGER J G. Combustion:Fossil power systems[M]. Windsor:Combustion Engineering,1981.

[182] VASSILEV S V,KITANO K,TAKEDA S,et al. Influence of mineral and chemical composition of coal ashes on their fusibility[J]. Fuel Processing Technology,1995,45(1):27−51.

[183] BRYERS R W. Fireside slagging,fouling,and high–temperature corrosion of heat–transfer surface due to impurities in steam–raising fuels[J]. Progress in Energy & Combustion Science,1996,22(1):29−120.

[184] YAN Li,GUPTA R P,WALL T F. The implication of mineral coalescence behaviour on ash formation and ash deposition during pulverised coal combustion[J]. Fuel,2001,80(9):1333−1340.

[185] YAN Li,GUPTA R P,WALL T F. A mathematical model of ash formation during pulverized coal combustion[J]. Fuel,2002,81(3):337−344.

[186] RUSSELL N V,WIGLEY F,WILLIAMSON J. The roles of lime and iron oxide on the formation of ash and deposits in PF combustion[J]. Fuel,2002,81(5):673−681.

[187] 代世峰,任德贻,唐跃刚. 煤中常量元素的赋存特征与研究意义[J]. 煤田地质与勘探,2005,33(2):1−5.

DAI Shifeng,REN Deyi,TANG Yuegang. Modes of occurrence of major elements in coal and their study significance[J]. Coal Geology & Exploration,2005,33(2):1−5.

[188] LAUMANN S,MICIĆ V,KRUGE M A,et al. Variations in concentrations and compositions of polycyclic aromatic hydrocarbons (PAHs) in coals related to the coal rank and origin[J]. Environmental Pollution,2011,159(10):2690−2697.

[189] RIBEIRO J,SILVA T,FILHO J G M,et al. Polycyclic aromatic hydrocarbons (PAHs) in burning and non–burning coal waste piles[J]. Journal of Hazardous Materials,2012,199/200:105–110.

[190] MATHEWS J P,SHARMA A. The structural alignment of coal and the analogous case of Argonne Upper Freeport coal[J]. Fuel,2012,95:19−24.

[191] SHINE K P,FUGLESTVEDT J S,HAILEMARIAM K,et al. Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases[J]. Climatic Change,2005,68(3):281−302.

[192] MARTUNUS,HELWANI Z,WIHEEB A D,et al. In situ carbon dioxide capture and fixation from a hot flue gas[J]. International Journal of Greenhouse Gas Control,2012,6:179−188.

[193] MAHESHWARI N,KRISHNA P K,THAKUR I S,et al. Biological fixation of carbon dioxide and biodiesel production using microalgae isolated from sewage waste water[J]. Environmental Science and Pollution Research,2020,27(22):27319−27329.

[194] YE Jiexu,AN Ni,CHEN Han,et al. Performance and mechanism of carbon dioxide fixation by a newly isolated chemoautotrophic strain Paracoccus denitrificans PJ–1[J]. Chemosphere,2020,252:126473.

[195] 汪新文. 地球科学概论[M]. 北京:地质出版社,2013.

[196] 赵师庆. 实用煤岩学[M]. 北京:地质出版社,1991.

[197] 赵师庆,王飞宇,董名山. 论“沉煤环境–成煤类型–煤质特征”概略成因模型I:环境与煤相[J]. 沉积学报,1994,12(1):32−39.

ZHAO Shiqing,WANG Feiyu,DONG Mingshan. Discussion on the “sedimentary environment–type of coal–forming–characteristic of coal quality” rough genetic model I:Environment and coal facies[J]. Acta Sedimentologica Sinica,1994,12(1):32−39.

[198] 代俊峰,李增华,许德如,等. 煤型关键金属矿产研究进展[J]. 大地构造与成矿学,2021,45(5):963−982.

DAI Junfeng,LI Zenghua,XU Deru,et al. Coal–hosted critical metal deposits:A review[J]. Geotectonica et Metallogenia,2021,45(5):963−982.

[199] 刘桂建,王桂梁,张威. 煤中微量元素的环境地球化学研究:以兖州矿区为例[M]. 徐州:中国矿业大学出版社,1999.

[200] 刘桂建,彭子成,杨萍玥,等. 煤中微量元素富集的主要因素分析[

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.