Coal Geology & Exploration
Abstract
Background Coal-measure minerals (CMMs) play a significant role in ensuring the safe supply of mineral resources in China. Reviewing the advances and trends of research on the geology of CMMs in China holds great historical significance and practical value while potentially providing some insights into subsequent research. Advances Based on textual research and the analysis of logical relations, this study generalized the advances in research on the geology of CMMs in China into four aspects. (1) Increasingly improved geological theory system of CMMs: China’s classic theoretical system of coal field geology was formed in the second half of the 20th century, and the geological theory system focusing on coals, coal-measure gas, and coal-measure critical metals has been gradually developed since the 21st century. (2) Research on the origin and genesis of coals, advancing the international coal geology: The advancements include the development of the new coal metamorphism theory, the discovery of the world's youngest soft lignite, the reveal of late-stage coalification jumps, the establishment of the ordinary organic petrology, and the comprehensive ascertainment of the formation and evolutionary mechanisms of coals. (3) The unique CMM accumulation, distribution, and metallogenic theory: The specific outcomes include the establishment of multiple sedimentary and structural coal-controlling patterns, the reveal of the fundamental framework of coal accumulation in sea areas, the identification of deposits of various coal-measure critical metals, and the determination of the division schemes for coal-controlling geotectonic units and the metallogenic zones of coal-measure critical metals, and the development of a geological theory system for coalbed methane. (4) Significant achievements in the geological surveys and assessment of special coal resources: Specifically, the methodological system for the geological prediction and assessment of special coal types and high-quality, eco-friendly, and clean coal resources has been developed, the methodological system for the resource potential assessment of tar-rich coals and underground coal gasification has been formed, and the coal resources for related purposes have been preliminarily investigated. Prospects The analytical results indicate that major national demands determine the trends of research on the geology of CMMs. It is recommended to focus on four aspects in future geological study: the precise exploration and exploitation of coal resources, the exploration and orderly production of coal-measure gas, the exploration and exploitation of critical metals, and the geological guarantee for in situ fluidized coal mining. Additionally, it is necessary to pay attention to the accumulation mechanisms and resource prediction methods for helium in coal measures.
Keywords
coal measure, mineral, geology, advance, trend, China
DOI
10.12363/issn.1001-1986.24.10.0622
Recommended Citation
Q.
(2025)
"Advances and trends of modern and contemporary research on the geology of coal-measure minerals in China,"
Coal Geology & Exploration: Vol. 53:
Iss.
1, Article 3.
DOI: 10.12363/issn.1001-1986.24.10.0622
Available at:
https://cge.researchcommons.org/journal/vol53/iss1/3
Reference
[1] 刘峰,郭林峰,赵路正. 双碳背景下煤炭安全区间与绿色低碳技术路径[J]. 煤炭学报,2022,47(1):1−15.
LIU Feng,GUO Linfeng,ZHAO Luzheng. Research on coal safety range and green low-carbon technology path under the dual-carbon background[J]. Journal of China Coal Society,2022,47(1):1−15.
[2] 国土资源部. 全国矿产资源规划(2016—2020年)[EB/OL]. [2016–11–09]. [2021–07–07]. https://law168.com.cn/doc/view?id =173792.
[3] 韩德馨. 中国煤田地质学史的研究[J]. 中国矿业学院学报,1986(2):93−99.
[4] 中国煤炭学会、中国地质学会煤田地质专业委员会. 六十年来的中国煤地质学回顾与展望[J]. 煤田地质与勘探,1982,10(3):1−6.
[5] 张泓,张群,曹代勇,等. 中国煤田地质学的现状与发展战略[J]. 地球科学进展,2010,25(4):343−352.
ZHANG Hong,ZHANG Qun,CAO Daiyong,et al. Status and development strategy of coal geology in China[J]. Advances in Earth Science,2010,25(4):343−352.
[6] 唐跃刚,郭亚楠,王绍清. 中国特殊煤种:树皮煤的研究进展[J]. 中国科学基金,2011,25(3):154−163.
TANG Yuegang,GUO Yanan,WANG Shaoqing. The Chinese typical coal type–bark coal:A review[J]. Bulletin of National Natural Science Foundation of China,2011,25(3):154−163.
[7] 秦勇. 中国煤层气成藏作用研究进展与述评[J]. 高校地质学报,2012,18(3):405−418.
QIN Yong. Advances and reviews on coalbed methane reservoir formation in China[J]. Geological Journal of China Universities,2012,18(3):405−418.
[8] 贾建称,巩泽文,靳德武,等. 煤炭地质学“十三五” 主要进展及展望[J]. 煤田地质与勘探,2021,49(1):32−44.
JIA Jianchen,GONG Zewen,JIN Dewu,et al. The main progress in the 13th Five–Year Plan and the prospect of coal geology[J]. Coal Geology & Exploration,2021,49(1):32−44.
[9] 邵龙义,徐小涛,王帅,等. 中国含煤岩系古地理及古环境演化研究进展[J]. 古地理学报,2021,23(1):19−38.
SHAO Longyi,XU Xiaotao,WANG Shuai,et al. Research progress of palaeogeography and palaeoenvironmental evolution of coal–bearing series in China[J]. Journal of Palaeogeography (Chinese Edition),2021,23(1):19−38.
[10] 代世峰,赵蕾,王宁,等. 煤系中关键金属元素的成矿作用研究进展与展望[J]. 矿物岩石地球化学通报,2024,43(1):49−63.
DAI Shifeng,ZHAO Lei,WANG Ning,et al. Advance and prospect of researches on the mineralization of critical elements in coal–bearing sequences[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2024,43(1):49−63.
[11] 袁国泰,黄凯芬. 试论煤系共伴生矿产资源的分类及其它[J]. 中国煤田地质,1998,10(1):21−23.
[12] 中国地质调查局. 中国矿产地分布全图(2020)[EB/OL]. [2020–09–04]. [2024–10–04]. https://www.cgs.gov.cn /zdjh2020/dzsj/xmjz/202009/t20200904_654348.html.
[13] 孙升林,吴国强,曹代勇,等. 煤系矿产资源及其发展趋势[J]. 中国煤炭地质,2014,26(11):1−11.
SUN Shenglin,WU Guoqiang,CAO Daiyong,et al. Mineral resources in coal measures and development trend[J]. Coal Geology of China,2014,26(11):1−11.
[14] 曹代勇,秦国红,张岩,等. 含煤岩系矿产资源类型划分及组合关系探讨[J]. 煤炭学报,2016,41(9):2150−2155.
CAO Daiyong,QIN Guohong,ZHANG Yan,et al. Classification and combination relationship of mineral resources in coal measures[J]. Journal of China Coal Society,2016,41(9):2150−2155.
[15] 刘建强,迟乃杰,从培章,等. 煤系共伴生矿产定义内涵及分类[J]. 山东国土资源,2015,31(9):30−34.
LIU Jianqiang,CHI Naijie,CONG Peizhang,et al. Definition connotation and classification of coal associated minerals[J]. Shandong Land and Resources,2015,31(9):30−34.
[16] 秦勇. 煤系矿产资源前缘性地质调查[R]. 休宁:安徽省地质学会,2019.
[17] 顾琅,周树人. 中国矿产志[M]. 上海:文明书局,1906.
[18] 谢家荣. 淮南新煤田及大淮南盆地地质矿产[J]. 地质论评,1947(5):317.
[19] 刘城墉,薛业琪. 淮南煤田发现史话[J]. 中国煤田地质,2002,12(1):75−76.
[20] 北京矿业学院煤田地质系,北京地质学院煤田地质教研室,煤炭工业部北京科学研究院地质研究所. 中国煤田地质学(共三册)[M]. 北京:煤炭工业出版社,1961.
[21] 杨起,韩德馨. 中国煤田地质学–上册–煤田地质基础理论[M]. 北京:煤炭工业出版社,1979.
[22] 韩德馨,杨起. 中国煤田地质学–下册–中国聚煤规律[M]. 北京:煤炭工业出版社,1980.
[23] 中国煤炭地质总局. 中国聚煤作用系统分析[M]. 徐州:中国矿业大学出版社,2001.
[24] WARWICK P D. Coal systems analysis:Geological society of America specical paper 387[M]. Boulder:Geological Society of America Inc,2005.
[25] MILICI R C. Appalachian coal assessment:Defining the coal systems of the Appalachian Basin[M]//Coal Systems Analysis. Warwick P D (ed). Boulder:Geological Society of America Inc,2005:9–30.
[26] 程爱国,林大扬,彭苏萍. 聚煤作用系统论和系统分析[J]. 地球学报,1999,20(增刊1):617−622.
CHENG Aiguo,LIN Dayang,PENG Suping. The systematic analysis of coal accumulation process[J]. Acta Geoscientia Sinica,1999,20(Sup.1):617−622.
[27] 尚宫女史. 李四光追悼会上周总理当场宣读李四光女儿的信[EL/OL]. [2022–01–28]. https://mbd.baidu. com/newspage/data/landingsuper?_refluxos=&pageType=1&nid=news_9381556356572739588&wfr=.
[28] 陈家良,邵震杰,秦勇. 能源地质学[M]. 徐州:中国矿业大学出版社,2004.
[29] 秦勇,傅雪海,吴财芳,等. 化石能源地质学导论[M]. 徐州:中国矿业大学出版社,2017.
[30] DAI Shifeng,YAN Xiaoyun,WARD C R,et al. Valuable elements in Chinese coals:A review[J]. International Geology Review,2018,60(5/6):590−620.
[31] DAI Shifeng,ZHENG Xue,WANG Xibo,et al. Stone coal in China:A review[J]. International Geology Review,2018,60(5/6):736−753.
[32] 代世峰,赵蕾,魏强,等. 中国煤系中关键金属资源:富集类型与分布[J]. 科学通报,2020,65(33):3715−3729.
DAI Shifeng,ZHAO Lei,WEI Qiang,et al. Resources of critical metals in coal–bearing sequences in China:Enrichment types and distribution[J]. Chinese Science Bulletin,2020,65(33):3715−3729.
[33] 代俊峰,李增华,许德如,等. 煤型关键金属矿产研究进展[J]. 大地构造与成矿学,2021,45(5):963−982.
DAI Junfeng,LI Zenghua,XU Deru,et al. Coal–hosted critical metal deposits:A review[J]. Geotectonica et Metallogenia,2021,45(5):963−982.
[34] 宁树正,黄少青,朱士飞,等. 中国煤中金属元素成矿区带[J]. 科学通报,2019,64(24):2501−2513.
NING Shuzheng,HUANG Shaoqing,ZHU Shifei,et al. Mineralization zoning of coal–metal deposits in China[J]. Chinese Science Bulletin,2019,64(24):2501−2513.
[35] 李勇,潘松圻,宁树正,等. 煤系成矿学内涵与发展:兼论煤系成矿系统及其资源环境效应[J]. 中国科学:地球科学,2022,52(10):1948−1965.
LI Yong,PAN Songqi,NING Shuzheng,et al. Coal measure metallogeny:Metallogenic system and implication for resource and environment[J]. Science China Earth Sciences,65(7):1211–1228.
[36] HSIEH C Y. On lopinite,a new type of coal in China[J]. Bulletin of the Geological Society of China,1933,12(1/2):469−490.
[37] 阎峻峰,李广有. 乐平附近煤田地质及“乐平煤”[J]. 地质学报,1958,32(3):343−368.
YAN Junfeng,LI Guangyou. On the geology of the loping coal field and the “lopinite”[J]. Acta Geological Sinica,1958,32(3):343−368.
[38] 骆善胜. 长广煤田C煤层海相成煤的初步认识[J]. 煤炭学报,1980,5(3):26−37.
LUO Shansheng. Preliminary views on the marine origin of C seam in the Changguang coal deposit[J]. Journal of China Coal Society,1980,5(3):26−37.
[39] 韩德馨,任德贻,郭敏泰. 浙江长广煤田树皮残植煤的成因及其沉积环境[J]. 沉积学报,1983,1(4):1−14.
HAN Dexin,REN Deyi,GUO Mintai. Origin of bark liptobiolite and its depositional environment of Changguang coalfield,Zhejiang Province[J]. Acta Sedimentologica Sinica,1983,1(4):1−14.
[40] ZHONG Ningning,SMYTH M. Striking liptinitic bark remains peculiar to some Late Permian Chinese coals[J]. International Journal of Coal Geology,1997,33(4):333−349.
[41] 王士俊,刘咸卫,宋丽君. 乐平煤的成煤植物及树皮体的起源[J]. 煤炭学报,1998,23(3):231−235.
WANG Shijun,LIU Xianwei,SONG Lijun. The coal–forming plants of lopinite and genesis of barkinite[J]. Journal of China Coal Society,1998,23(3):231−235.
[42] 韩德馨. 云南禄劝泥盆纪角质残植煤的煤岩研究[J]. 煤炭学报,1964(1):95−99.
HAN Dexin. Preliminary study on the petrology of the Devonian liptobioliths in Luchiuan,Yunnan[J]. Journal of China Coal Society,1964(1):95−99.
[43] HAN Dexin. The features of Devonian coal–bearing deposits in South China,The People’s Republic of China[J]. International Journal of Coal Geology,1989,12(1/2/3/4):209−223.
[44] 程顶胜,韩德馨,王延斌,等. 中国泥盆纪煤煤岩研究[J]. 煤田地质与勘探,1995,23(1):25−28.
CHENG Dingsheng,HAN Dexin,WANG Yanbin,et al. Coal petrological study of China Devonian coal[J]. Coal Geology & Exploration,1995,23(1):25−28.
[45] 王延斌,韩德馨,毛鹤龄. 大麦地中泥盆统角质残植煤的物质组成及成因[J]. 中国矿业大学学报,1997,26(4):38−41.
WANG Yanbin,HAN Dexin,MAO Heling. Maceral and origin of cutinitic liptobiolith in Middle Devonian in Damaidi area[J]. Journal of China University of Mining & Technology,1997,26(4):38−41.
[46] 权彪,韩德馨. 华南中泥盆世成煤植物[J]. 中国矿业大学学报,1997,26(3):91−94.
QUAN Biao,HAN Dexin. Coal forming plants in Middle Devonian from South China[J]. Journal of China University of Mining & Technology,1997,26(3):91−94.
[47] 权彪,韩德馨. 云南禄劝中泥盆世含煤岩系化石生态群落:兼论角质残植煤的成因[J]. 中国矿业大学学报,1998,27(3):298−301.
QUAN Biao,HAN Dexin. Fossil communities of coal–bearing Formation (Givetian,Middle Devonian) in Luquan,Yunnan:Analysis of the origin of cutinitic liptobiolith[J]. Journal of China University of Mining & Technology,1998,27(3):298−301.
[48] 薛耀松,俞从流. 浙西、赣东北寒武系下统荷塘组岩石特征及沉积环境分析[J]. 地层学杂志,1979,3(4):283−293.
[49] 全国地层委员会. 全国地层会议学术报告汇编:中国的寒武系[M]. 北京:科学出版社,1962.
[50] 西安煤田地质研究所. 陕南早古生代煤性质及成因的初步研究[J]. 煤田地质与勘探,1975,3(5):1−30.
[51] 煤炭部地质勘探研究所早古生代煤课题组. 早古生代煤[J]. 煤炭科学技术,1977,5(8):13−16.
[52] 朱丽英. 早古生代高变质藻煤的煤岩特征及其地质意义[J]. 地质论评,1983,29(3):245−261.
ZHU Liying. Petrography of Early Paleozoic highly metamorphosed boghead coal and its geological significance[J]. Geological Review,1983,29(3):245−261.
[53] 林骥. 早古生代高变质藻煤成因的稳定同位素(硫、碳、氧)研究初试[J]. 地质论评,1983,29(3):234−244.
LIN Ji. A preliminary study of sulphur,carbon and oxygen isotope evidence for the origin of Early Paleozoic highly metamorphosed boghead coal[J]. Geological Review,1983,29(3):234−244.
[54] 姜月华,岳文浙,业治铮. 中国南方下寒武统石煤的特征、沉积环境和成因[J]. 中国煤田地质,1994,6(4):26–31.
JIANG Yuehua,YUE Wenzhe,YE Zhizheng. Characteristics,sedimentary environment and origin of the Lower Cambrian stone–like coal in southern China[J]. Coal Geology of China,1994,6(4):26–31.
[55] QIN Yong,MOORE T A,SHEN Jian,et al. Resources and geology of coalbed methane in China:A review[J]. International Geology Review,2018,60(5/6):777−812.
[56] 任德贻. 成煤作用[M]//杨起,韩德馨. 中国煤田地质学(上册). 北京:煤炭工业出版社,1979:1–21.
[57] 赵师庆. 中国华北东部晚古生代煤层的煤质差别和显微特征[J]. 中国矿业学院学报,1981(2):41−52.
ZHAO Shiqing. Difference in coal quality between seams of the Late Paleozoic era in the eastern part of North China and their microscopic characteristics[J]. Journal of China University of Mining & Technology,1981(2):41−52.
[58] 赵师庆,王飞宇,董名山. 论“沉煤环境—成煤类型—煤质特征” 概略成因模型:Ⅰ. 环境与煤相[J]. 沉积学报,1994,12(1):32−39.
ZHAO Shiqing,WANG Feiyu,DONG Mingshan. Discussion on the “sedimentary environment–type of coal–forming–characteristic of coal quality” rough genetic model i. environment and coal facies[J]. Acta Sedimentologica Sinica,1994,12(1):32−39.
[59] 易同生. 特高硫煤中镓的富集及其地质成因––以黔东凯里下二叠统梁山组为例[D]. 徐州:中国矿业大学,2007.
[60] 王竹泉. 华北煤种牌号之带状分布及其地质因素[J]. 煤矿技术,1956(7):1−6.
[61] 王竹泉. 华南晚二迭世煤田形成条件及分布规律[M]. 北京:煤炭工业出版社,1980.
[62] 杨起. 煤化作用[M]//杨起,韩德馨. 中国煤田地质学(上册). 北京:煤炭工业出版社,1979:209–234.
[63] 杨起,任德贻. 中国煤变质问题的探讨[J]. 煤田地质与勘探,1981(1):1−10.
[64] 杨起. 中国煤变质研究[J]. 地球科学,1989,14(4):341−345.
YANG Qi. A study on coal metamorphism in China[J]. Earth Science,1989,14(4):341−345.
[65] 杨起,任德贻. 中国煤变质作用[M]. 北京:煤炭工业出版社,1996.
[66] 潘治贵,兰庆余. 热水煤田煤的热水变质特征[M]. 北京:地质出版社,1992.
[67] 刘志坚. 论烧变岩的特征、成因及地下火燃烧的规律性[J]. 地质论评,1959,5(5):209−211.
LIU Zhijian. On the characteristics and genesis of the ground–fire rocks and the rules of spontaneous combustion of coal seams[J]. Geological Review,1959,5(5):209−211.
[68] 刘长龄. 论烧变矿床与烧变岩研究及其意义[J]. 地质找矿论丛,1988,3(3):54−61.
LIU Changling. On study of burnt deposits and burnt rocks and their significance[J]. Contributions to Geology and Mineral Resources Research,1988,3(3):54−61.
[69] 韩德馨. 中国煤岩学[M]. 徐州:中国矿业大学出版社,1996.
[70] 韩德馨,孙俊民. 中国煤的燃烧变质作用与煤层自燃特征[J]. 中国煤田地质,1998,10(4):15−16.
[71] 缪奋,张伍侪. 构造体系与煤的变质[J]. 煤田地质与勘探,1977,5(6):82−86.
[72] 缪奋. 煤的构造应力变质作用[J]. 煤炭科学技术,1979,7(2):44−48.
[73] 缪奋. 煤的构造应力变质作用的地质模式[J]. 科学通报,1980,25(3):128−130.
[74] 曲星武,王金城. 煤的结构与变质因素的关系[J]. 煤田地质与勘探,1980,8(3):20−28.
[75] 曹代勇,唐跃刚. 煤中应变各向异性条纹的发现及意义[J]. 煤田地质与勘探,1994,22(3):14−16.
CAO Daiyong,TANG Yuegang. The strain optical anisotropic lamella in coal and its geological significance[J]. Coal Geology & Exploration,1994,22(3):14−16.
[76] 曹运兴,张玉贵,李凯琦,等. 构造煤的动力变质作用及其演化规律[J]. 煤田地质与勘探,1996,24(4):15−18.
CAO Yunxin,ZHANG Yugui,LI Kaiqi,et al. Tectonic coal dynamometamorphism and evolutionary process[J]. Coal Geology & Exploration,1996,24(4):15−18.
[77] 姜波,秦勇,宋党育,等. 高煤级构造煤的XRD结构及其构造地质意义[J]. 中国矿业大学学报,1998,27(2):115−118.
JIANG Bo,QIN Yong,SONG Dangyu,et al. XRD structure of high rank tectonic coals and its implication to structural geology[J]. Journal of China University of Mining & Technology,1998,27(2):115−118.
[78] 曹代勇,李小明,张守仁. 构造应力对煤化作用的影响:应力降解机制与应力缩聚机制[J]. 中国科学(D辑:地球科学),2006,36(1):59−68.
[79] 曹代勇,刘志飞,王安民,等. 构造物理化学条件对煤变质作用的控制[J]. 地学前缘,2022,29(1):439−448.
CAO Daiyong,LIU Zhifei,WANG Anmin,et al. Control of coal metamorphism by tectonic physicochemical conditions[J]. Earth Science Frontiers,2022,29(1):439−448.
[80] 曹代勇,宁树正,郭爱军,等. 中国煤田构造格局及其基本特征[J]. 矿业科学学报,2016,1(1):1−8.
CAO Daiyong,NING Shuzheng,GUO Aijun,et al. Basic characteristics of coalfield tectonic framework in China[J]. Journal of Mining Science and Technolocy,2016,1(1):1−8.
[81] 曹代勇,宁树正,郭爱军,等. 中国煤田构造格局与构造控煤作用[M]. 北京:科学出版社,2018.
[82] JIN Kuili,QIN Yong. Coal petrology and anomalous coalification of Middle and Late Pleistocene peat and soft brown coal from the Tengchong Basin,western Yunnan,People’s Republic of China[J]. International Journal of Coal Geology,1989,13(1/2/3/4):143−170.
[83] 秦勇,金奎励. 滇西腾冲盆地中晚更新世泥炭向软褐煤的转化特征及异常煤化作用[J]. 沉积学报,1989,7(3):73−81.
QIN Yong,JIN Kuili. Characteristics and anomalous coalification of the transformation from the middle and Late Pleistocene peat to soft brown coal in Tengchong Basin[J]. Acta Sedimentologica Sinica,1989,7(3):73−81.
[84] TAYLOR G H,TEICHMULLER M,DAVIS A,et al. Organic Petrology[M]. Berlin:Gebrude Borntraeger Press,1998.
[85] QIN Yong,JIN Kuili,HAN Dexin. Discovery and implication of Late Pleistocene soft brown coal from Tengchong Basin,western Yunnan[J]. Chinese Science Bulletin,1995,40(7):586−590.
[86] STACH E,MACKOWSKY M,TEICHMÜLLE M,et al. Stach’s textbook of coal petrology[M]. Berlin:Gebrude Borntraeger Press ,1982.
[87] 秦勇. 中国高煤级煤的显微岩石学特征及结构演化[M]. 徐州:中国矿业大学出版社,1994.
[88] 秦勇,姜波,王超,等. 中国高煤级煤的电子顺磁共振特征:兼论煤中大分子基本结构单元的“拼叠作用” 及其机理[J]. 中国矿业大学学报,1997,26(2):10−14.
QIN Yong,JIANG Bo,WANG Chao,et al. Electron paramagnetic resonance studies of high rank coals in China:A reference to makingup and its mechanism of macromolecular basic structural units in coals[J]. Journal of China University of Mining & Technology,1997,26(2):10−14.
[89] QIN Yong,JIANG Bo. Coalification jumps,stages and mechanism of high–rank coals in China[M]//Geology of fossil fuels–coal. Boca Raton:CRC Press,2020:99–122.
[90] QIN Yong,JIANG Bo,ZENG Yong,et al. Jumpy evolution of EPR response of Chinese high–rank coals and its implication to geochemistry[J]. Science in China Series D:Earth Sciences,1998,41(3):230−234.
[91] 姜波,秦勇. 实验变形煤结构的13C NMR特征及其构造地质意义[J]. 地球科学,1998,23(6):579−582.
JIANG Bo,QIN Yong. 13C NMR characteristics of structures of the experimental deformed coals and their significance of structural geology[J]. Earth Science,1998,23(6):579−582.
[92] 李小明,曹代勇. 不同变质类型煤的电子顺磁共振特征对比分析[J]. 现代地质,2009,23(3):531−534.
LI Xiaoming,CAO Daiyong. Contrast study on the EPR characteristics of coals of different metamorphism types[J]. Geoscience,2009,23(3):531−534.
[93] 张守仁,曹代勇,陈佩佩,等. 高煤阶煤的阶跃性演化机理研究[J]. 煤炭学报,2002,27(5):525−528.
ZHANG Shouren,CAO Daiyong,CHEN Peipei,et al. Study on the step evolution mechanism of high–rank coal[J]. Journal of China Coal Society,2002,27(5):525−528.
[94] LI Jiuqing,QIN Yong,CHEN Yilin,et al. Differential graphitization of organic matter in coal:Some new understandings from reflectance evolution of meta–anthracite macerals[J]. International Journal of Coal Geology,2021,240:103747.
[95] LI Jiuqing,QIN Yong,CHEN Yilin,et al. HRTEM observation of morphological and structural evolution of aromatic fringes during the transition from coal to graphite[J]. Carbon,2022,187:133−144.
[96] LI Jiuqing,QIN Yong,CHEN Yilin,et al. Microstructural characteristics of graphite microcrystals in graphitized coal:Insights from petrology,mineralogy and spectroscopy[J]. Minerals,2022,12(10):1189.
[97] LI Jiuqing,QIN Yong,CHEN Yilin,et al. Structural characteristics and evolution of meta–anthracite to coaly graphite:A quantitative investigation using X–ray diffraction,Raman spectroscopy,and high–resolution transmission electron microscopy[J]. Fuel,2023,333:126334.
[98] LI Jiuqing,QIN Yong,SHEN Jian,et al. Evolution of carbon nanostructures during coal graphitization:Insights from X–ray diffraction and high–resolution transmission electron microscopy[J]. Energy,2024,290:130316.
[99] 秦勇,金奎励. 谢家荣先生对中国煤岩学研究的创始性贡献[M]//秦勇,赵长毅,张万红. 金奎励教授煤岩学和有机岩石学文集. 徐州:中国矿业大学出版社,2006:100–104.
[100] 陈佩元,孙达三,丁丕训,等. 中国煤岩图鉴[M]. 北京:煤炭工业出版社,1996.
[101] 中国煤田地质总局. 中国煤岩学图鉴[M]. 徐州:中国矿业大学出版社,1996.
[102] 姜尧发,代世峰,王伟铭,等. 中国新生代的煤岩学、孢粉学和地球化学研究[M]. 北京:地质出版社,2022.
[103] LU Jie,ZHANG Xiuyi. Characteristics of sphagnum coal considered as a new genetic type of coal[J]. International Journal of Coal Geology,1989,11(2):191−203.
[104] 马兴祥. 贵州水城晚二迭世主采煤层(C605、C409)的岩石学研究与煤相及古泥炭沼泽的演化[D]. 徐州:中国矿业大学,1988.
[105] JIN Kuili,LIU Dameng,XIAO Xianming et al. Sedimentary organic matter's classification of oil–gas source rocks in China[J]. Journal of China University of Mining & Technology,1996,6(2):91−95
[106] 肖贤明,金奎励. 中国陆相油、气源岩分散有机质的分类[J]. 科学通报,1990,35(12):922−924.
[107] 金奎励,刘大锰,姚素平,等. 中国油、气源岩有机成分划分及地化特征[J]. 沉积学报,1997,15(2):160–163.
JIN Kuili,LIU Dameng,YAO Suping,et al. Genetic classification of organic components of hydrocarbon source rocks in China and its geological features[J]. Acta Sedimentologica Sinia,1997,15(2):160–163.
[108] YAO Suping,ZHANG Jingrong,JIN Kuili. Organism relics or kerogens in oils as oil–source rock correlation indicator[J]. Science in China Series D:Earth Sciences,1997,40(3):253−258.
[109] JIN Kuili,YANG Luwu. Source rock classification and the basic structure of coal and kerogen[J]. Journal of China University of Mining & Technology,2002,12(1):1−5.
[110] 肖贤明. 有机岩石学及其在油气评价中的应用[M]. 广州:广东科技出版社,1992.
[111] 钟宁宁,秦勇. 碳酸盐岩有机岩石学:显微组分特性、成因、演化及其与油气关系[M]. 北京:科学出版社,1995.
[112] 杜美利,金奎励,杨建业. 碳酸盐烃源岩研究新进展[J]. 西安矿业学院学报,1999,19(3):231−235.
DU Meili,JIN Kuili,YANG Jianye. Research progress with carbonate hydrocarbon source rock[J]. Journal of Xi’an Mining Institute,1999,19(3):231−235.
[113] AFANASJEVA G A,TAZAWA J. A new large chonetid (Brachiopoda) from the Middle Permian of the southern Kitakami Mountains,northeast Japan[J]. Paleontological Journal,2007,41(4):424−428.
[114] 何锡麟,朱梅丽. 腕足动物化石一新类型及其系统分类[J]. 中国矿业学院学报,1979(6):131−134.
[115] SHEN Shuzhong,JIN Yugan,ZHANG Yan,et al. Permian Brachiopod Genera on type species of China (Phanerozoic Brachiopod Genera of China:Volume 2)[M]. Beijing:Science Press,2017:651–882.
[116] CAMPI M J,SHEN Shuzhong,SHI G R,et al. First record of Permianella He & Zhu,1979 (Permianellidae;Brachiopoda) from peninsular Malaysia[J]. Alcheringa:an Australasian Journal of Palaeontology,2000,24(1):37−43.
[117] 沈树忠,张华,张以春,等. 中国二叠纪综合地层和时间框架[J]. 中国科学:地球科学,2019,49(1):160−193.
SHEN Shuzhong,ZHANG Hua,ZHANG Yichun,et al. Permian integrative stratigraphy and timescale of China[J]. Scientia Sinica (Terrae),2019,49(1):160−193.
[118] 田宝霖. 中国煤层的煤核[J]. 中国矿业学院学报,1980,9(2):1−9.
TIAN Baolin. Coalballs in the coal seams in China[J]. Journal of China University of Mining & Technology,1980,9(2):1−9.
[119] 田宝霖,香凝,马施民,等. 山西太原早二叠世山西始莲座蕨(新种)及其古植物地理学和古环境意义[J]. 古地理学报,2007,9(5):487−498.
TIAN Baolin,XIANG Ning,MA Shimin,et al. Eoangiopteris shanxiensis sp. nov. from the Early Permian of Taiyuan,Shanxi and its palaeophytogeographic and palaeoenvironmental significance[J]. Journal of Palaeogeography,2007,9(5):487−498.
[120] 王士俊. 中国化石植物志(第1卷):中国煤核植物[M]. 北京:高等教育出版社,2009.
[121] 尚冠雄,汪曾荫. 从区域范围讨论华北石炭二叠纪地层划分问题[J]. 中国区域地质,1984,3(3):85−91.
SHANG Guanxiong,WANG Zengyin. Several clues for the strati graphic division of the Permo–Carboniferous of North China:A regional approach[J]. Regional Geology of China,1984,3(3):85−91.
[122] 汪曾荫,刘汉男,唐锦秀,等. 华北地台晚古生代含煤地层多重划分[J]. 华北地质矿产杂志,1996(1):9−23.
[123] 汪曾荫. 华北地台晚古生代年代地层系统[J]. 中国煤田地质,1995,7(3):17−23.
[124] 汪曾荫. 华北地台晚古生代地层定量时间分析[J]. 地层学杂志,1996,20(1):9−15.
WANG Zengyin. Quantitative time analysis of Late Paleozoic strata in North China platform[J]. Journal of Stratigraphy,1996,20(1):9−15.
[125] 王向东,胡科毅,郄文昆,等. 中国石炭纪综合地层和时间框架[J]. 中国科学:地球科学,2019,49(1):139−159.
WANG Xiangdong,HU Keyi,QIE Wenkun,et al. Carboniferous integrative stratigraphy and timescale of China[J]. Scientia Sinica(Terrae),2019,49(1):139−159.
[126] 陈丕基. 郯庐断裂巨大平移的时代与格局[J]. 科学通报,1988,33(4):289−293.
[127] 万天丰,朱鸿,赵磊,等. 郯庐断裂带的形成与演化:综述[J]. 现代地质,1996,10(2):159−166.
WAN Tianfeng,ZHU Hong,ZHAO Lei,et al. Formation and evolution of Tancheng–Lujiang fault zone:A review[J]. Geoscience,1996,10(2):159−166.
[128] 范炳恒,张华. 渤海附近郯庐断裂走滑的生物地层证据[J]. 中国矿业大学学报,2000,29(3):282−286.
FAN Bingheng,ZHANG Hua. Biostratigraphic evidences for strike–slip distance of Tancheng–Lujiang fault near Bohai Sea[J]. Journal of China University of Mining & Technology,2000,29(3):282−286.
[129] 孙智新,王平丽,袁金良,等. 山东、辽宁中寒武统(第三统)三叶虫组合(双耳虫带)与郯庐断裂的位移[C]//中国矿物岩石地球化学学会岩相古地理专业委员会:第十四届全国古地理学及沉积学学术会议论文摘要集. 2016:14.
[130] 刘焕杰. 潮汐沉积与含煤建造[J]. 沉积学报,1988,6(2):42−49.
LIU Huanjie. Tidal deposits and coal–bearing formations[J]. Acta Sedimentologica Sinica,1988,6(2):42−49.
[131] 秦勇,曹作华. 腐殖煤海相成煤理论现状及展望[J]. 岩相古地理,1991,11(3):46−53.
[132] 刘焕杰. 湘中下石炭统测水组含煤建造沉积环境的研究[C]//中国地质学会1962年年会论文摘要汇编. 1962:15–16.
[133] 刘焕杰. 达累斯萨拉姆热带现代潮坪及珊瑚礁沉积[J]. 中国矿业学院学报,1980(3):37−48.
LIU Huanjie. The tropical and modern tidal flats and coral reef deposits in Dar es Salaam[J]. Journal of China University of Mining & Technology,1980(3):37−48.
[134] 卓越. 桂中晚二迭世合山组沉积特征和成煤环境[J]. 煤田地质与勘探,1980,8(3):1−7.
[135] 卓越. 略论桂中晚二迭世合山组碳酸盐岩潮坪沉积及其与成煤的关系[J]. 中国矿业学院学报,1981(1):59−66.
ZHUO Yue. A brief discussion on the mid–guangsi Upper Permian carbonate rock tidal–flat deposition of the Heshan Formation and its relationship with coalification[J]. Journal of China University of Mining & Technology,1981(1):59−66.
[136] 刘焕杰,贾玉如,龙耀珍,等. 海相成煤论进展[J]. 沉积学报,1992,10(3):47−56.
LIU Huanjie,JIA Yuru,LONG Yaozhen,et al. Progress in coal–forming theory of marine facies[J]. Acta Sedimentologica Sinica,1992,10(3):47−56.
[137] 张鹏飞,刘焕杰,卓越,等. 试论局限台地碳酸盐岩型含煤建造:桂中马滩一带合山组的某些沉积特征[J]. 沉积学报,1983,1(3):16−28.
ZHANG Pengfei,LIU Huanjie,ZHUO Yue,et al. The coal–bearing formation of carbonatite type in restricted platform–some sedimetary characteristics of Heshan Formation in the Matan region of central Guangxi[J]. Acta Sedimentologica Sinica,1983,1(3):16−28.
[138] 刘焕杰,贾玉如,龙耀珍,等. 华北石炭纪含煤建造的陆表海堡岛体系特点及其事件沉积[J]. 沉积学报,1987,5(3):73−80.
LIU Huanjie,JIA Yuru,LONG Yaozhen,et al. The features of the barrier island systems of the epeiric sea and their event deposits of coal–bearing formations in carboniferous of North China[J]. Acta Sedimentologica Sinica,1987,5(3):73−80.
[139] 邵龙义,张鹏飞,刘钦甫,等. 湘中下石炭统测水组沉积层序及幕式聚煤作用[J]. 地质论评,1992,38(1):52−59.
SHAO Longyi,ZHANG Pengfei,LIU Qinfu,et al. The Lower Carboniferous Ceshui Formation in central Hunan,South China:Depositional sequences and episodic coal accumulation[J]. Geological Review,1992,38(1):52−59.
[140] 李宝芳,温显端,李贵东. 华北石炭、二叠系高分辨层序地层分析[J]. 地学前缘,1999,6(增刊1):81–94.
LI Baofang,WEN Xianduan,LI Guidong. High resolution sequence stratigraphy analysis on the Permo–Carboniferous in North China platform[J]. Earth Science Frontiers,1999,6(Sup.1):81–94.
[141] 李增学,魏久传,韩美莲. 海侵事件成煤作用:一种新的聚煤模式[J]. 地球科学进展,2001,16(1):120−124.
LI Zengxue,WEI Jiuchuan,HAN Meilian. Coal formation in transgressive events:A new pattern of coal accumulation[J]. Advance in Earth Sciences,2001,16(1):120−124.
[142] SHAO Longyi,ZHANG Pengfei,GAYER R A,et al. Coal in a carbonate sequence stratigraphic framework:The Upper Permian Heshan Formation in central Guangxi,southern China[J]. Journal of the Geological Society,2003,160(2):285−298.
[143] 吴冲龙. 抚顺盆地的滑积煤及超厚煤层的成因模式[J]. 科学通报,1994,39(23):2175−2177.
[144] WU Chonglong,LI Sitian,CHENG Shoutian. Humid–type alluvial–fan deposits and associated coal seams in the Lower Cretaceous Haizhou Formation,Fuxin Basin of northeastern China[M]//Geological society of America special papers. Geological Society of America,1992:269–286.
[145] 吴冲龙,李绍虎,王根发,等. 陆相断陷盆地超厚煤层异地堆积的新模式[J]. 地球科学,2003,28(3):289−296.
WU Chonglong,LI Shaohu,WANG Genfa,et al. New evidence and new model about allochthonous accumulation of extra–thick coalbeds in continental fault basin,China[J]. Earth Science,2003,28(3):289−296.
[146] 吴冲龙,李绍虎,王根发,等. 先锋盆地超厚优质煤层的异地成因模式[J]. 沉积学报,2006,24(1):1−9.
WU Chonglong,LI Shaohu,WANG Genfa,et al. Genetic model about the extra–thick and high quality coalbed in Xianfeng Basin,Yunnan Province,China[J]. Acta Sedimentologica Sinica,2006,24(1):1−9.
[147] 吴昕,吴冲龙,毛小平,等. 吉尔嘎郎图凹陷赛汉塔拉组沉积特征与超厚煤层异地成因分析[J]. 沉积学报,2016,34(6):1155−1164.
WU Xin,WU Chonglong,MAO Xiaoping,et al. Analysis on sedimentary characteristics and allochthonous genesis of extra–thick seam in Jiergalangtu Depression,Saihantala Formation[J]. Acta Sedimentologica Sinica,2016,34(6):1155−1164.
[148] 胡益成,苏华成. 河南晚石炭世含煤地层中的风暴异地煤[J]. 煤田地质与勘探,1992,20(3):1−5.
HU Yicheng,SU Huacheng. The storm allochthony coal of Late Carboniferous coal–bearing formation in Henan Province[J]. Coal Geology & Exploration,1992,20(3):1−5.
[149] 苏华成,李书舜,胡益成. 一个识别古代风暴作用的新标志:特征异地煤[J]. 岩相古地理,1992,12(2):1−5.
SU Huacheng,LI Shushun,HU Yicheng. Distinctive ailochthonous coal as the criteria for recognition of ancient storm processes[J]. Sedimentary Geology and Tethyan Geology,1992,12(2):1−5.
[150] 廖玉枝,胡益成,徐世球. 河南荥巩煤田太原组中风暴异地煤的煤岩煤质特征[J]. 中国煤田地质,1995,7(4):41−45.
LIAO Yuzhi,HU Yicheng,XU Shiqiu. Coal petrofaphic and coal quality characteristics og tempestitic allochthonous coal in Taiyuan gormation,Xinggong coalfield,Henan[J]. Coal Geology of China,1995,7(4):41−45.
[151] 胡益成,廖玉枝. 华北盆地南部早二叠世早期聚煤作用的成因机制[J]. 地学前缘,1999,6(增刊1):111–115.
HU Yicheng,LIAO Yuzhi. Genetic mechanism of Early Permian coal accumulation in the southern North China Basin[J]. Earth Science Frontiers,1999,6(Sup.1):111–115.
[152] 胡益成,廖玉枝,徐世球. 南华北晚石炭世风暴事件及其对聚煤作用的影响[J]. 地球科学,1997,22(1):46−50.
HU Yicheng,LIAO Yuzhi,XU Shiqiu. Late Carboniferous storm events and their effects on coal accumulation in South Ern North China[J]. Earth Science,1997,22(1):46−50.
[153] 胡益成,廖玉枝,李召明. 河南宜洛煤田晚石炭世地层中的异地煤[J]. 地球科学,1998,23(6):589−594.
HU Yicheng,LIAO Yuzhi,LI Zhaoming. Late Carboniferous allochthonous coal of Yiluo coalfield in Henan Province[J]. Earth Science,1998,23(6):589−594.
[154] 胡益成,廖玉枝. 河南荥巩煤田早二叠世早期地层中异地煤的成因动力学研究[J]. 中国煤田地质,2000,12(2):3−7.
HU Yicheng,LIAO Yuzhi. Research on genetical dynamics of Allochthonous Coal in Early Permian strata of Xinggong coal field,Henan Province[J]. Coal Geology of China,2000,12(2):3−7.
[155] 李思田,李宝芳,杨士恭,等. 中国东北部晚中生代断陷型煤盆地的沉积作用和构造演化[J]. 地球科学,1982,7(3):275−294.
LI Sitian,LI Baofang,YANG Shigong,et al. Sedimentation and tectonic evolution of Mesozoic faul ED coal basins in northeastern China[J]. Earth Science,1982,7(3):275−294.
[156] 李思田. 断陷盆地分析与煤聚积规律 [M]. 北京:地质出版社,1988.
[157] 李思田,杨士恭,吴冲龙,等. 中国东北部晚中生代裂陷作用和东北亚断陷盆地系[J]. 中国科学(D),1987(2):185−194.
[158] 王桂梁,朱炎铭. 论煤层流变[J]. 中国矿业学院学报,1988,17(3):16−25.
WANG Guiliang,ZHU Yanming. Study on the rheology of coal bed[J]. Journal of China University of Mining & Technology,1988,17(3):16−25.
[159] 杨雄庭. 测水煤系主要煤层的流变特征[J]. 湖南地质,1990,9(3):36−40.
YANG Xiongting. The rheologic feature of the main coal beds in Ceshui coal measure[J]. Hunan Geology,1990,9(3):36−40.
[160] 周建勋,王桂梁,邵震杰. 煤的高温高压实验变形研究[J]. 煤炭学报,1994,19(3):324−331.
ZHOU Jianxun,WANG Guiliang,SHAO Zhenjie. Coal deformation under high temperature and confining pressure[J]. Journal of China Coal Society,1994,19(3):324−331.
[161] 琚宜文,谭静强,侯泉林,等. 煤层流变研究现状及发展趋势[J]. 中国煤炭地质,2008,20(10):7−10.
JU Yiwen,TAN Jingqiang,HOU Quanlin,et al. Research situation and development trend of coalbed rheology[J]. Coal Geology of China,2008,20(10):7−10.
[162] 屈争辉,姜波,汪吉林,等. 构造煤结构演化及其应力–应变环境[J]. 高校地质学报,2012,18(3):453−459.
QU Zhenghui,JIANG Bo,WANG Jilin,et al. Evolution of textures and stress–strain environments of tectonically–deformed coals[J]. Geological Journal of China Universities,2012,18(3):453−459.
[163] 唐杨丰. 浅析天湖山煤矿区推滑叠加型构造与煤层流变[J]. 能源与环境,2014(6):36−37.
[164] 姜波,李明,宋昱,等. 构造煤及其瓦斯地质意义[M]. 北京:科学出版社,2020.
[165] 王桂梁. 滑脱构造的解析流程与模式研究[J]. 煤田地质与勘探,1989,17(1):17−21.
[166] 王桂梁. 浅层重力滑动构造的类型划分与形成机制[J]. 中国矿业学院学报,1985,14(3):131−139.
WANG Guiliang. Classification and mechanism of the gravity gliding structures in shallow level of the earth crust[J]. Journal of China University of Mining & Technology,1985,14(3):131−139.
[167] 王桂梁. 华北南部的逆冲推覆伸展滑覆与重力滑动构造:兼论滑脱构造的研究方法[M]. 徐州:中国矿业大学出版社,1992.
[168] 王桂梁,刘登桃,姜波,等. 福建天湖山区推滑叠加型滑脱构造模式[J]. 中国科学(B辑),1995(1):85−92.
[169] 林添艳. 福建省推覆体下找煤典范剖析[J]. 西部探矿工程,2007,19(10):123−124.
[170] 王桂梁,谭海樵,徐志斌,等. 湘粤煤盆中叠加型滑脱构造及其控煤意义[J]. 煤炭学报,1996,21(5):449−454.
WANG Guiliang,TAN Haiqiao,XU Zhibin,et al. Superimposed detachment structures in Hunan and Guangdong coal basins and its significance in control of coal preservation[J]. Journal of China Coal Society,1996,21(5):449−454.
[171] 王文杰. 试论中国大地构造的控煤作用[J]. 中国煤田地质,1998,10(4):12−14.
[172] 曹代勇,张守仁,穆宣社,等. 中国含煤岩系构造变形控制因素探讨[J]. 中国矿业大学学报,1999,28(1):25−28.
CAO Daiyong,ZHANG Shouren,MU Xuanshe,et al. Study on control factors of deformation of coal measures in China[J]. Journal of China University of Mining & Technology,1999,28(1):25−28.
[173] 丁培民. 中国毗邻海域构造聚煤带[J]. 海洋地质与第四纪地质,1989,9(4):1−13.
DING Peimin. Tectonic coal–forming belt in China adjacent sea areas[J]. Marine Geology & Quaternary Geology,1989,9(4):1−13.
[174] 李增学,张功成,李莹,等. 中国海域区古近纪含煤盆地与煤系分布研究[J]. 地学前缘,2012,19(4):314−326.
LI Zengxue,ZHANG Gongcheng,LI Ying,et al. The Paleogene coal–bearing basin and coal–measures distribution of China sea area[J]. Earth Science Frontiers,2012,19(4):314−326.
[175] 秦勇,沈玉林,屈争辉,等. 中国近海盆地新生代煤系地层发育特征与成烃潜力[R]. 徐州:中国矿业大学,2015.
[176] 杨柳. 中国海域新生代聚煤规律与控煤模式[D]. 徐州:中国矿业大学,2017.
YANG Liu. Cenozoic coal accumulation regularity andcontrolling pattern in China offshore[D]. Xuzhou:China University of Mining and Technology,2017.
[177] 陈术源. 中国海域煤层生气作用及其对煤系气成藏的贡献[D]. 徐州:中国矿业大学,2018.
CHEN Shuyuan. Gas generation from coal seams and its contribution to accumulation of coal measure gas in offshore waters of China[D]. Xuzhou:China University of Mining and Technology,2018.
[178] 张功成,李增学,王东东,等. 中国南海海域煤地质特征[J]. 煤炭学报,2020,45(11):3864−3878.
ZHANG Gongcheng,LI Zengxue,WANG Dongdong,et al. Characteristics of coal geology in South China Sea[J]. Journal of China Coal Society,2020,45(11):3864−3878.
[179] 李明潮,张五侪. 中国主要煤田的浅层煤成气[M]. 北京:科学出版社,1990.
[180] 张新民,张遂安,钟玲文,等. 中国的煤层甲烷[M]. 西安:陕西科学技术出版社,1991.
[181] 叶建平,秦勇,林大扬. 中国煤层气资源[M]. 徐州:中国矿业大学出版社,1998.
[182] QIN Yong,YE Jianping,LIN Dayang. Geological seeking for potential CBM–accumulating zones and districts in China[C]//Proceedings of the '99 International Symposium on Mining and Science and Technology,Xie Heping and Golosinski T S (ed). Rotterdam:Balkema Publishers,1999:243–246.
[183] 张新民. 中国煤层气地质与资源评价[M]. 北京:科学出版社,2002.
[184] 宋岩,张新民,柳少波,等. 中国煤层气地质与开发基础理论[M]. 北京:科学出版社,2012.
[185] 秦勇,傅雪海,韦重韬,等. 煤层气成藏动力条件及其控藏效应[M]. 北京:科学出版社,2012.
[186] 秦勇,汤达祯,刘大锰,等. 煤储层开发动态地质评价理论与技术进展[J]. 煤炭科学技术,2014,42(1):80−88.
QIN Yong,TANG Dazhen,LIU Dameng,et al. Geological evaluation theory and technology progress of coal reservoir dynamics during coalbed methane drainage[J]. Coal Science and Technology,2014,42(1):80−88.
[187] 傅雪海. 多相介质煤岩体物性的物理模拟与数值模拟[D]. 徐州:中国矿业大学,2001.
[188] 傅雪海,秦勇,张万红. 高煤级煤基质力学效应与煤储层渗透率耦合关系分析[J]. 高校地质学报,2003,9(3):373−377.
FU Xuehai,QIN Yong,ZHANG Wanhong. Coupling correlation between high–rank coal matrix mechanic effect and coal reservoir permeability[J]. Geological Journal of China Universities,2003,9(3):373−377.
[189] 秦勇,傅雪海,吴财芳,等. 高煤级煤储层弹性自调节作用及其成藏效应[J]. 科学通报,2005,50(增刊1):82−86.
[190] 陈金刚,秦勇,傅雪海. 高煤级煤储层渗透率在煤层气排采中的动态变化数值模拟[J]. 中国矿业大学学报,2006,35(1):49−53.
CHEN Jingang,QIN Yong,FU Xuehai. Numerical simulation on dynamic variation of the permeability of high rank coal reservoirs during gas recovery[J]. Journal of China University of Mining & Technology,2006,35(1):49−53.
[191] 赵明章,姚泽,徐明,等. 考虑自调节效应的煤层气动态渗透率模型[J]. 断块油气田,2013,20(1):63−66.
ZHAO Mingzhang,YAO Ze,XU Ming,et al. Dynamic permeability model considering self–adjustment effect for coalbed methane[J]. Fault–Block Oil & Gas Field,2013,20(1):63−66.
[192] 孟艳军,汤达祯,李治平,等. 高煤阶煤层气井不同排采阶段渗透率动态变化特征与控制机理[J]. 油气地质与采收率,2015,22(2):66−71.
MENG Yanjun,TANG Dazhen,LI Zhiping,et al. Dynamic variation characteristics and mechanism of permeability in high–rank CBM wells at different drainage and production stages[J]. Petroleum Geology and Recovery Efficiency,2015,22(2):66−71.
[193] 李祥春,黄涛,陈小龙,等. 煤基质变形影响下含瓦斯煤渗透率动态变化规律[J]. 天然气工业,2020,40(1):83−87.
LI Xiangchun,HUANG Tao,CHEN Xiaolong,et al. Dynamic change laws of the permeability of coal containing gas under the effect of coal matrix deformation[J]. Natural Gas Industry,2020,40(1):83−87.
[194] 吴财芳,秦勇,傅雪海,等. 煤基块弹性能及其与地质控制因素之间的关系[J]. 中国矿业大学学报,2005,34(5):636−639.
WU Caifang,QIN Yong,FU Xuehai,et al. Coal matrix flexibility energy and the relation with geological controlling factors[J]. Journal of China Uni
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons