Coal Geology & Exploration
Abstract
Objective Lithology identification lays the foundation for fine-scale reservoir evaluation. However, traditional identification methods generally utilize the interactive relationships between only 2‒3 logging parameters, suffering from low utilization rates of logging information and low identification accuracy for strata with small differences in logging responses. This seriously restricts the effects of old well reexamination. The efficient, intelligent CatBoost classification algorithm can fully mine the correlations between multi-source logging information and lithology. Methods This study investigated the Jurassic sandstone and mudstone reservoirs in the Lunnan area, Xinjiang, China. Using five logging parameters determined through sensitivity analysis, i.e., natural gamma-ray value, spontaneous potential, deep and shallow resistivity ratio, sonic interval transit time, and density, this study developed an intelligent lithology identification model based on the CatBoost algorithm. The optimized model was employed to deal with actual logging data for lithology identification, and its performance was evaluated using accuracy, precision, and recall and was then compared with the lithology identification results of the random forest (RF) and k-nearest neighbors (KNN) algorithms. Results and Conclusions The results indicate that the large-scale lithologies of the Jurassic strata in the Lunnan area include mudstones, sandstones, and conglomerates, with complex fine-scale lithologies. In the identification of the fine-scale lithologies of the target reservoir, the intelligent lithology identification model, established using the CatBoost algorithm and lithology-sensitive logging parameters, yielded an accuracy of 92.64%, significantly higher than that of the random forest model (82.95%) and the KNN model (70.16%). This result demonstrates that the CatBoost model can effectively address of the challenges of lithology identification in the study area. The results of this study will provide a scientific basis for the review and further exploration and development of old wells in the Lunnan area. Besides, these results can serve as a valuable reference for research on methods for fine-scale identification of complex lithologies.
Keywords
logging, lithology identification, artificial intelligence (AI), CatBoost, gradient boosting algorithm
DOI
10.12363/issn.1001-1986.24.07.0503
Recommended Citation
CAI Ming, ZHOU Qingwen, YANG Cong,
et al.
(2025)
"An intelligent lithology identification method for sandstone and mudstone strata and its applications: A case study of the Jurassic strata in the Lunnan area, Xinjiang, China,"
Coal Geology & Exploration: Vol. 53:
Iss.
1, Article 20.
DOI: 10.12363/issn.1001-1986.24.07.0503
Available at:
https://cge.researchcommons.org/journal/vol53/iss1/20
Reference
[1] 蔡明,章成广,唐军,等. 参数估计法声波远探测反射波提取效果影响因素研究[J]. 西安石油大学学报(自然科学版),2020,35(1):42−48.
CAI Ming,ZHANG Chengguang,TANG Jun,et al. Study on factors of influencing extraction effect of reflection wave in acoustic remote detection using parameter estimation method[J]. Journal of Xi’an Shiyou University (Natural Science Edition),2020,35(1):42−48.
[2] 蔡明,章成广,韩闯,等. 微裂缝对横波衰减影响的实验研究及其在致密砂岩裂缝评价中的应用[J]. 中国石油大学学报(自然科学版),2020,44(1):45−52.
CAI Ming,ZHANG Chengguang,HAN Chuang,et al. Experimental research of effect of microfracture on shear wave attenuation and its application on fracture evaluation in tight sand formation[J]. Journal of China University of Petroleum (Edition of Natural Science),2020,44(1):45−52.
[3] 雷明,陈涛,韩乾凤,等. 一种基于常规测井资料计算碳酸盐岩储层裂缝孔隙度新方法[J]. 地球科学,2023,48(7):2678−2689.
LEI Ming,CHEN Tao,HAN Qianfeng,et al. A new method for calculating fracture porosity based on conventional logging data[J]. Earth Science,2023,48(7):2678−2689.
[4] 胡玉双,王志勇,李金宝. 塔南凹陷南二段低渗透砂岩有利储层预测研究[J]. 能源与环保,2023,45(3):7−12.
HU Yushuang,WANG Zhiyong,LI Jinbao. Study on prediction of favorable reservoirs of low permeability sandstone in South 2nd Section of Tanan Sag[J]. China Energy and Environmental Protection,2023,45(3):7−12.
[5] 李晓峰,王黎,李剑平,等. 基于岩性识别的渗透率计算模型[J]. 测井技术,2022,46(1):84−88.
LI Xiaofeng,WANG Li,LI Jianping,et al. Permeability calculation model based on lithology identification[J]. Well Logging Technology,2022,46(1):84−88.
[6] 薛桂玉,菅红军,赵永忠,等. 吉木萨尔凹陷芦草沟组页岩油储层岩性识别方法[J]. 测井技术,2021,45(6):636−641.
XUE Guiyu,JIAN Hongjun,ZHAO Yongzhong,et al. Lithology identification method for the shale oil reservoir of Lucaogou Formation in Jimusar Depression[J]. Well Logging Technology,2021,45(6):636−641.
[7] 罗兴平,庞旭,苏东旭,等. 电成像测井在复杂砂砾岩储集层岩性识别中的应用:以准噶尔盆地玛湖凹陷西斜坡百口泉组为例[J]. 新疆石油地质,2018,39(3):345−351.
LUO Xingping,PANG Xu,SU Dongxu,et al. Recognition of complicated sandy conglomerate reservoir based on micro-resistivity imaging logging:A case study of Baikouquan Formation in western slope of Mahu Sag,Junggar Basin[J]. Xinjiang Petroleum Geology,2018,39(3):345−351.
[8] 周海超,付广,王艳,等. 测井资料交会图法在碎屑岩岩性识别中的应用:以十屋断陷为例[J]. 大庆石油地质与开发,2009,28(1):136−138.
ZHOU Haichao,FU Guang,WANG Yan,et al. Application of the crossplot method of well logging data in the lithology recognition of clastic rock:Taking Shiwu Fault Depression as example[J]. Petroleum Geology & Oilfield Development in Daqing,2009,28(1):136−138.
[9] 陈龙,魏五峰. 松辽盆地滨北地区变质岩岩性测井识别方法[J]. 测井技术,2019,43(4):423−426.
CHEN Long,WEI Wufeng. Log identification methods of metamorphic lithology in Binbei area,Songliao Basin[J]. Well Logging Technology,2019,43(4):423−426.
[10] 王楠. 乍得Bongor盆地潜山岩性识别及储层测井综合评价[J]. 科学技术与工程,2019,19(27):66−73.
WANG Nan. Lithology identification and well-logging comprehensive evaluation of basement reservoir in Bongor Basin,Chad[J]. Science Technology and Engineering,2019,19(27):66−73.
[11] 王宵宇,谢然红,毛治国,等. 主成分分析法在致密砂岩岩性识别的应用研究[J]. 天然气与石油,2021,39(1):88−93.
WANG Xiaoyu,XIE Ranhong,MAO Zhiguo,et al. Application research of principal component analysis method in lithology identification of tight sandstone[J]. Natural Gas and Oil,2021,39(1):88−93.
[12] 俞礽安,司马献章,李建国,等. 鄂尔多斯盆地直罗组地层岩性测井响应特征[J]. 煤田地质与勘探,2018,46(6):33−39.
YU Reng’an,SIMA Xianzhang,LI Jianguo,et al. Response characteristics of lithologic logging of Zhiluo Formation in Ordos Basin[J]. Coal Geology & Exploration,2018,46(6):33−39.
[13] QI Tingting,ZHAO Hui,FU Jia. Research on the reservoir characteristics and lithology recognition based on asphalt sandstone[J]. IOP Conference Series Earth and Environmental Science,2019,237(3):032044.
[14] 李国欣,赵太平,石玉江,等. 鄂尔多斯盆地马家沟组碳酸盐岩储层成岩相测井识别评价[J]. 石油学报,2018,39(10):1141−1154.
LI Guoxin,ZHAO Taiping,SHI Yujiang,et al. Diagenetic facies logging recognition and evaluation of carbonate reservoirs in Majiagou Formation,Ordos Basin[J]. Acta Petrolei Sinica,2018,39(10):1141−1154.
[15] 程希,周军,傅海成,等. 机器学习算法在地球物理测井中的适用性及应用[J]. 西北地质,2023,56(4):336−348.
CHENG Xi,ZHOU Jun,FU Haicheng,et al. Applicability and application of machine learning algorithm in logging interpretation[J]. Northwestern Geology,2023,56(4):336−348.
[16] 许振浩,马文,李术才,等. 岩性识别:方法、现状及智能化发展趋势[J]. 地质论评,2022,68(6):2290−2304.
XU Zhenhao,MA Wen,LI Shucai,et al. Lithology identification:Method,research status and intelligent development trend[J]. Geological Review,2022,68(6):2290−2304.
[17] GONG Renbin,ZHOU Jingrun. Research on application of deep learning in lithology recognition of oil and gas reservoir[C]//2021 IEEE International Conference on Power,Intelligent Computing and Systems (ICPICS). Shenyang,China. IEEE,2021:110–115.
[18] 刘明军,李恒堂,姜在炳. GA-BP神经网络模型在彬长矿区测井岩性识别中的应用[J]. 煤田地质与勘探,2011,39(4):8−12.
LIU Mingjun,LI Hengtang,JIANG Zaibing. Application of genetic-BP neural network model in lithology identification by logging data in Binchang mining area[J]. Coal Geology & Exploration,2011,39(4):8−12.
[19] 陈刚,汪凯斌,蒋必辞,等. 随钻测井中岩性识别方法的对比及应用[J]. 煤田地质与勘探,2018,46(1):165−169.
CHEN Gang,WANG Kaibin,JIANG Bici,et al. Comparison and application of LWD lithology identification method[J]. Coal Geology & Exploration,2018,46(1):165−169.
[20] 黄安,蔡文渊,魏新路,等. 基于改进随机森林的火山岩测井岩性识别[J]. 科学技术与工程,2023,23(9):3696−3704.
HUANG An,CAI Wenyuan,WEI Xinlu,et al. Lithology identification of volcanic logging based on improved random forest[J]. Science Technology and Engineering,2023,23(9):3696−3704.
[21] 王啟,杨添微,刘永震,等. 基于随机森林算法的复杂碳酸盐岩岩性识别[J]. 工程地球物理学报,2020,17(5):550−558.
WANG Qi,YANG Tianwei,LIU Yongzhen,et al. Identification of complex carbonate lithology based on random forest algorithm[J]. Chinese Journal of Engineering Geophysics,2020,17(5):550−558.
[22] 孙岿. 基于改进KNN算法的潜山复杂岩性测井识别方法[J]. 特种油气藏,2022,29(3):18−27.
SUN Kui. Logging identification method of complex lithology in buried hill based on the improved KNN algorithm[J]. Special Oil & Gas Reservoirs,2022,29(3):18−27.
[23] 赵彤彤,张春雷,张春雨,等. 基于模糊熵的KNN分类模型在岩性识别中的应用[J]. 计算机工程与应用,2018,54(24):260−265.
ZHAO Tongtong,ZHANG Chunlei,ZHANG Chunyu,et al. Application of KNN classification model based on fuzzy entropy in lithology recognition[J]. Computer Engineering and Applications,2018,54(24):260−265.
[24] KUMAR T,SEELAM N K,RAO G S. Lithology prediction from well log data using machine learning techniques:A case study from Talcher coalfield,eastern India[J]. Journal of Applied Geophysics,2022,199:104605.
[25] YU Zhichao,WANG Zhizhang,ZENG Fancheng,et al. Volcanic lithology identification based on parameter-optimized GBDT algorithm:A case study in the Jilin Oilfield,Songliao Basin,NE China[J]. Journal of Applied Geophysics,2021,194:104443.
[26] 马陇飞,萧汉敏,陶敬伟,等. 基于梯度提升决策树算法的岩性智能分类方法[J]. 油气地质与采收率,2022,29(1):21−29.
MA Longfei,XIAO Hanmin,TAO Jingwei,et al. Intelligent lithology classification method based on GBDT algorithm[J]. Petroleum Geology and Recovery Efficiency,2022,29(1):21−29.
[27] 彭英,李克文,朱应科,等. 基于FL-XGBoost算法的砂泥岩识别方法:以胜利油田牛庄地区为例[J]. 油气地质与采收率,2023,30(1):76−85.
PENG Ying,LI Kewen,ZHU Yingke,et al. FL-XGBoost algorithm-based method for identifying sandstone and mudstone:A case study of Niuzhuang area in Shengli Oilfield[J]. Petroleum Geology and Recovery Efficiency,2023,30(1):76−85.
[28] PROKHORENKOVA L,GUSEV G,VOROBEV A,et al. CatBoost:unbiased boosting with categorical features[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook,NY,USA:Curran Associates Inc. ,2018:6639–6649.
[29] 李华洋,谭强,朱施杰,等. 基于CatBoost算法的孔隙压力预测方法及其在井壁稳定分析中的应用[J]. 中国安全生产科学技术,2023,19(2):136−142.
LI Huayang,TAN Qiang,ZHU Shijie,et al. Prediction method of pore pressure based on CatBoost algorithm and its application in wellbore stability analysis[J]. Journal of Safety Science and Technology,2023,19(2):136−142.
[30] LU Chengang,ZHANG Sui’an,XUE Dan,et al. Improved estimation of coalbed methane content using the revised estimate of depth and CatBoost algorithm:A case study from southern Sichuan Basin,China[J]. Computers & Geosciences,2022,158:104973.
[31] 马晓君,宋嫣琦,常百舒,等. 基于CatBoost算法的P2P违约预测模型应用研究[J]. 统计与信息论坛,2020,35(7):9−17.
MA Xiaojun,SONG Yanqi,CHANG Baishu,et al. Application research of P2P default prediction model based on CatBoost algorithm[J]. Statistics & Information Forum,2020,35(7):9−17.
[32] 罗仁泽,庹娟娟,倪华玲,等. 基于改进集成学习的测井岩性识别方法研究[J]. 石油物探,2023,62(2):212−224.
LUO Renze,TUO Juanjuan,NI Hualing,et al. Logging lithology identification method based on improved ensemble learning[J]. Geophysical Prospecting for Petroleum,2023,62(2):212−224.
[33] 顾崇寅,徐潇源,王梦圆,等. 基于CatBoost算法的光伏阵列故障诊断方法[J]. 电力系统自动化,2023,47(2):105−114.
GU Chongyin,XU Xiaoyuan,WANG Mengyuan,et al. CatBoost algorithm based fault diagnosis method for photovoltaic arrays[J]. Automation of Electric Power Systems,2023,47(2):105−114.
[34] FRIEDMAN J H. Greedy function approximation:A gradient boosting machine[J]. The Annals of Statistics,2001,29(5):1189−1232.
[35] 徐雄飞,王嘉伟,杨波,等. 塔里木盆地轮南地区侏罗系砂岩储层成岩作用研究[J]. 岩性油气藏,2011,23(5):21−27.
XU Xiongfei,WANG Jiawei,YANG Bo,et al. Study on diagenesis of Jurassic sandstone reservoirs in Lunnan area,Tarim Basin[J]. Lithologic Reservoirs,2011,23(5):21−27.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons