Coal Geology & Exploration
Abstract
Objective Quartz, the piezoelectric material discovered the earliest, has found widespread applications in industry, military fields, and daily life due to its piezoelectricity. The widely distributed loess worldwide is composed primarily of quartz, accounting for 37.0% to 69.9%. However, there is a lack of studies on the piezoelectricity of loess both domestically and internationally. Methods This study investigated the ${\mathrm{Q}}_2^{{\mathrm{eol}}} $ loess from the Weibei Loess Tableland in Shaanxi Province as an example to explore the piezoelectricity of loess. The piezoelectric coefficient of the loess was measured, and its piezoelectric voltage under the action of static loading and vibration was investigated using experiments Results and Conclusions The results indicate that loess exhibits piezoelectricity. Based on this characteristic, loess can be used for developing piezoelectric cells and conduct piezoelectric power generation. The piezoelectricity of loess is related to its dry density and moisture content rather than its thickness. Loess with lower dry density and higher moisture content exhibits stronger piezoelectricity and a higher piezoelectric coefficient; and vice versa. Under the conditions of natural density and moisture content, loess exhibits a piezoelectric coefficient of 16.1 pC/N. Under the action of static loading, the piezoelectric voltage signals of the loess appeared as a sine wave with regular waveforms, a frequency of 10 MHz, a period of 100 ns, and piezoelectric voltage exceeding 0.6 V. When multiple loess samples were connected in series, the voltage increased cumulatively. Under the action of vibration, the piezoelectric voltage of the loess increased significantly. It variedunder different vibration frequencies and peaked under resonance, with the maximum voltage of a single loess sample exceeding 2.1 V. Investigating the feasibility of replacing traditional car batteries with loess-based piezoelectric cells under the combined action of vibration and upper load is undoubtedly a topic of great interest. Furthermore, research based on the piezoelectricity of loess in loess regions, including soil moisture monitoring, seismic activity monitoring, and predominant period determination, holds great theoretical and practical significance. The results of this study could serve as a valuable reference for these research in loess areas.
Keywords
loess, piezoelectricity, influential factor, sine wave, piezoelectric power generation, automobile battery
DOI
10.12363/issn.1001-1986.24.07.0445
Recommended Citation
JING Yanlin, LIU Jie, LIU Qingying,
et al.
(2025)
"Experimental study of the piezoelectricity of Middle Pleistocene loess in the Weibei region, China,"
Coal Geology & Exploration: Vol. 53:
Iss.
1, Article 15.
DOI: 10.12363/issn.1001-1986.24.07.0445
Available at:
https://cge.researchcommons.org/journal/vol53/iss1/15
Reference
[1] 高长银. 基于晶体变形的压电理论及应用[M]. 北京:化学工业出版社,2021.
[2] GHOSH S,MONDAL D,ROY S,et al. Water flow and finger-tapping mediated piezoelectric energy generation using a natural hematite-based flexible PVDF-HFP membrane[J]. Journal of Materials Chemistry C,2023,11(39):13418−13428.
[3] 张浪,石棋,张优,等. 用于能量收集器的PMnN-PZT压电陶瓷[J]. 中国陶瓷,2024,60(4):37−41.
ZHANG Lang,SHI Qi,ZHANG You,et al. PMnN-PZT piezoelectric ceramics for energy harvesters[J]. China Ceramics,2024,60(4):37−41.
[4] YU Yao,LI Jialin,XIE Zihao,et al. Characterizing piezoelectric properties of PVDF film under extreme loadings[J]. Smart Materials and Structures,2024,33(1):015026.
[5] 李金徽,刘晓东,金欣,等. PVDF/PPy柔性直流纳米发电机的制备与性能[J]. 复合材料学报,2024,41(6):2980−2990.
LI Jinhui,LIU Xiaodong,JIN Xin,et al. Preparation and performance of PVDF/PPy flexible DC nano-generator[J]. Acta Materiae Compositae Sinica,2024,41(6):2980−2990.
[6] 张建峰. 新型P(VDF-TrFE)柔性薄膜压电性能研究[D]. 西安:西安理工大学,2022.
ZHANG Jianfeng. Study on piezoelectric properties of new P(VDF-TrFE) flexible thin films[D]. Xi’an:Xi’an University of Technology,2022.
[7] 张博,谢华珂,丁虎,等. 压电纤维复合材料对悬臂结构的作动行为研究[J]. 力学学报,2024,56(5):1439−1447.
ZHANG Bo,XIE Huake,DING Hu,et al. Research on action behavior of macro fiber composites applied in cantilever structures[J]. Chinese Journal of Theoretical and Applied Mechanics,2024,56(5):1439−1447.
[8] WU Wenzhuo,WANG Lei,LI Yilei,et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics[J]. Nature,2014,514(7523):470−474.
[9] SHARMA P,GULER Z,JACKSON N. Development and characterization of confocal sputtered piezoelectric zinc oxide thin film[J]. Vacuum,2021,184:109930.
[10] YANG Fan,LI Jun,LONG Yin,et al. Wafer-scale heterostructured piezoelectric bio-organic thin films[J]. Science,2021,373(6552):337−342.
[11] PARK D S,HADAD M,RIEMER L M,et al. Induced giant piezoelectricity in centrosymmetric oxides[J]. Science,2022,375(6581):653−657.
[12] 王秀琨,王寅生. 岩石压电性[J]. 物探与化探,1985,9(4):274−280.
WANG Xiukun,WANG Yinsheng. Piezoelectricity of rocks[J]. Geophysical and Geochemical Exploration,1985,9(4):274−280.
[13] 王秀琨,王寅生,段兆金. 我国石英脉型矿床岩石压电性研究[J]. 物探与化探,1989,13(1):29−35.
WANG Xiukun,WANG Yinsheng,DUAN Zhaojin. Piezoelectricity of rocks from various quartzvein type ore deposits in China[J]. Geophysical and Geochemical Exploration,1989,13(1):29−35.
[14] 林卓然,陈丰. 矿物压电性的测试[J]. 地质科学,1965(1):86−94.
[15] 何椿霖. 渭北黄土–古土壤结合水膜厚度及其影响因素研究[D]. 西安:长安大学,2023.
HE Chunlin. Research on the thickness of the bound water film and its influencing factors in the Weihe river basin loess-paleosol and its effects[D]. Xi’an:Chang’an University,2023.
[16] 徐硕昌,刘德仁,王旭,等. 兰州新区大厚度湿陷性黄土宏细观参数试验研究[J]. 铁道科学与工程学报,2022,19(7):1918−1926.
XU Shuochang,LIU Deren,WANG Xu,et al. Experimental study on macro and meso parameters of large thickness collapsible loess in Lanzhou New District[J]. Journal of Railway Science and Engineering,2022,19(7):1918−1926.
[17] 王铁行,李彦龙,苏立君. 黄土表面吸附结合水的类型和界限划分[J]. 岩土工程学报,2014,36(5):942−948.
WANG Tiehang,LI Yanlong,SU Lijun. Types and boundaries of bound water on loess particle surface[J]. Chinese Journal of Geotechnical Engineering,2014,36(5):942−948.
[18] 中华人民共和国建设部. 土工试验方法标准:GB/T 50123—2019[S]. 北京:中国建筑工业出版社,2019.
[19] LI Jinglei,QU Wanbo,DANIELS J,et al. Lead zirconate titanate ceramics with aligned crystallite grains[J]. Science,2023,380(6640):87−93.
[20] ZHAO Qiuying,YANG Lu,MA Yizhou,et al. Highly sensitive,reliable and flexible pressure sensor based on piezoelectric PVDF hybrid film using MXene nanosheet reinforcement[J]. Journal of Alloys and Compounds,2021,886:161069.
[21] 陈宝成,覃双,张旭,等. 基于PVDF的高压电性薄膜制备工艺研究[J]. 传感器与微系统,2019,38(10):33−35.
CHEN Baocheng,QIN Shuang,ZHANG Xu,et al. Study on preparation process of high-voltage electrothinfilm based on PVDF[J]. Transducer and Microsystem Technologies,2019,38(10):33−35.
[22] 吴帅君. 尼龙 1313 的晶型转变及压电性研究[D]. 郑州:郑州大学,2015.
WU Shuaijun. The crystal structure transition and piezoelectric study of nylon 1313[D]. Zhengzhou:Zhengzhou University,2015.
[23] 张忠华,王淑云,程光明,等. 多次压电效应对压电石英物性系数的影响[J]. 纳米技术与精密工程,2013(1):45−50.
ZHANG Zhonghua,WANG Shuyun,CHENG Guangming,et al. Influence of multiple piezoelectric effects on physical parameters of piezoelectric quartz[J]. Nanotechnology and Precision Engineering,2013(1):45−50.
[24] 吴金根,高翔宇,陈建国,等. 高温压电材料、器件与应用[J]. 物理学报,2018,67(20):10−39.
WU Jingen,GAO Xiangyu,CHEN Jianguo,et al. Review of high temperature piezoelectric materials,devices,and applications[J]. Acta Physica Sinica,2018,67(20):10−39.
[25] 朱长歧,崔翔,胡明鉴,等. 钙质土电导率和渗透性的相关研究[J]. 岩土力学,2018,39(增刊2):142−148.
ZHU Changqi,CUI Xiang,HU Mingjian,et al. Study of electric conductivity and permeability of calcareous soil[J]. Rock and Soil Mechanics,2018,39(Sup.2):142−148.
[26] YANG Xingfu,JOHNSON S,WU Ning. The impact of stern-layer conductivity on the electrohydrodynamic flow around colloidal motors under an alternating current electric field[J]. Advanced Intelligent Systems,2019,1(8):1900096.
[27] 李银奎,闫正林,龙永福,等. 网状聚合物冠醚的压电性能研究[J]. 高分子材料科学与工程,1999,15(5):145−147.
LI Yinkui,YAN Zhenglin,LONG Yongfu,et al. Study of the piezoelectricity of network polymer with crown ether units[J]. Polymeric Materials Science & Cngineering,1999,15(5):145−147.
[28] 丁景园. 基于高压固结试验的黄土自重湿陷性研究[D]. 西安:长安大学,2018.
DING Jingyuan. Study on collapsibility of loess under self-gravity based on high pressure consolidation test[D]. Xi’an:Chang’an University,2018.
[29] 文玉梅,李平. 压电换能型传感器电学响应特性研究[J]. 压电与声光,1999,21(1):17−21.
WEN Yumei,LI Ping. Study on electrical response of transducing piezoelectric sensor[J]. Piezoelectrics & Acoustooptics,1999,21(1):17−21.
[30] 毕研栋,郭桢,卢劲锴,等. 南海西沙典型珊瑚砂岛礁场地地震响应模拟与监测研究[J]. 岩土工程学报,2024,46(8):1723−1731.
BI Yandong,GUO Zhen,LU Jinkai,et al. Numerical modeling and monitoring of the seismic response of coral reef island in Xisha Islands,South China Sea[J]. Chinese Journal of Geotechnical Engineering,2024,46(8):1723−1731.
[31] 陈国兴,樊良本,陈甦,等. 土质学与土力学[M]. 2版. 北京:中国水利水电出版社,2006.
[32] ZHANG Siqi,PEI Huafu. Determining the bound water content of montmorillonite from molecular simulations[J]. Engineering Geology,2021,294:106353.
[33] KHURSHID I,AFGAN I. Geochemical investigation of electrical conductivity and electrical double layer based wettability alteration during engineered water injection in carbonates[J]. Journal of Petroleum Science and Engineering,2022,215:110627.
[34] KOROBEYNIKOV S M,SHEVCHENKO V E,LOMAN V A,et al. On the effect of particles on the electrical conductivity of liquid dielectrics[J]. Surface Engineering and Applied Electrochemistry,2024,60(1):89−93.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons