•  
  •  
 

Coal Geology & Exploration

Abstract

Objective Curtain walls, recognized as a primary project for the prevention and control of water disasters in coal mines, will change the dynamic field of groundwater. Furthermore, their dissolution will affect the chemical field of groundwater, leading to variations in its hydrochemical composition. Methods This study investigated the Jurassic conglomerate aquifers in the Zhuxianzhuang Coal Mine, Huaibei coal field. Based on the statistics of conventional hydrochemical composition, Piper diagrams, ion combination proportions, and principal component analysis (PCA), this study explored the impacts of curtain walls on the hydrochemistry of the aquifers and determined the spatiotemporal hydrochemical evolutionary patterns under the influence of the curtain walls. Results and Conclusions The results indicate that the hydrochemical characteristics differ greatly between inside and outside the curtain walls, with the groundwater inside the curtain walls exhibiting elevated Ca2+ and Mg2+ concentrations compared to that outside the curtain walls. After the construction of the curtain walls, the hydrochemical processes are dominated by the dissolution of the curtain walls based on the leaching and dissolution of calcite (CaCO3) and dolomite (CaMg(CO3)2), accompanied by varying degrees of pyrite oxidation, alternating adsorption of cations, and desulfurization. Influenced by mining, the dissolution of the curtain walls produces significantly enhanced impacts on groundwater within them, with the dissolution of the northern curtain wall relatively weaker than that of the eastern counterpart. The results of this study will provide theoretical support for the monitoring and protection of curtain walls and the environmental protection of groundwater.

Keywords

Jurassic conglomerate aquifer, curtain wall, dissolution, hydrochemical evolution, Zhuxianzhuang Coal Mine

DOI

10.12363/issn.1001-1986.24.10.0633

Reference

[1] 王海. 隐伏火烧区烧变岩含水层水害治理技术研究[J]. 煤田地质与勘探,2024,52(5):88−97.

WANG Hai. Technologies for water hazard prevention and control in burnt rock aquifers within concealed burnt areas[J]. Coal Geology & Exploration,2024,52(5):88−97.

[2] 柳昭星,尚宏波,石志远,等. 岩溶裂隙发育地层帷幕注浆材料性能及适用性研究[J]. 煤炭科学技术,2020,48(4):256−265.

LIU Zhaoxing,SHANG Hongbo,SHI Zhiyuan,et al. Study on performance and applicability of curtain grouting materials in karst fractured stratum[J]. Coal Science and Technology,2020,48(4):256−265.

[3] 张丁阳. 裂隙岩体动水注浆扩散多场耦合机理研究[D]. 徐州:中国矿业大学,2018.

ZHANG Dingyang. Investigation on coupling mechanism of multi-fields for grouting diffusion in fractured rock mass with flowing water[D]. Xuzhou:China University of Mining and Technology,2018.

[4] 袁东锋,高晓耕. 黔南灯影组巨厚含水层立井井筒帷幕注浆参数研究[J]. 煤炭科学技术,2021,49(3):71−77.

YUAN Dongfeng,GAO Xiaogeng. Study on curtain grouting parameters of vertical shaft in Dengying Formation of southern Guizhou with thick aquifer[J]. Coal Science and Technology,2021,49(3):71−77.

[5] 赵宝峰,朱明诚,李德彬. 掘进巷道突水溃砂高压扰动注浆技术与应用[J]. 煤田地质与勘探,2022,50(6):65−72.

ZHAO Baofeng,ZHU Mingcheng,LI Debin. High-pressure jet disturbance grouting technology for water and sand inrush in roadway tunneling and its application[J]. Coal Geology & Exploration,2022,50(6):65−72.

[6] 王俊良. 过导水断层软岩巷道围岩稳定控制技术[J]. 煤矿安全,2020,51(12):85−92.

WANG Junliang. Surrounding rock stability control technology of soft rock roadway passing water conductive fault[J]. Safety in Coal Mines,2020,51(12):85−92.

[7] 丁冠涛,刘玉仙,孙中瑾,等. 北方某废弃矿区地下水污染帷幕注浆应急处置研究[J]. 地质学报,2019,93(增刊1):291−300.

DING Guantao,LIU Yuxian,SUN Zhongjin,et al. Emergency disposal of groundwater contamination curtain grouting in an abandoned mining area in North China[J]. Acta Geologica Sinica,2019,93(Sup.1):291−300.

[8] 刘乐平,李红立,苏南. 跨孔电磁波CT探测在采空区帷幕注浆工程中的应用[J]. 煤炭科学技术,2020,48(增刊2):98−103.

LIU Leping,LI Hongli,SU Nan. Application on cross-hole electromagnetic wave CT detection in goaf curtain grouting engineering[J]. Coal Science and Technology,2020,48(Sup.2):98−103.

[9] 董书宁,杨志斌,姬中奎,等. 神府矿区大型水库旁烧变岩水保水开采技术研究[J]. 煤炭学报,2019,44(3):709−717.

DONG Shuning,YANG Zhibin,JI Zhongkui,et al. Study on water-preserved mining technology of burnt rock aquifer beside the large reservoir in Shenfu mining area[J]. Journal of China Coal Society,2019,44(3):709−717.

[10] WANG Hai,TONG Meiling. Water resources protection of mining area in toutun river basin of Tianshan Mountains:A case study of Liuhuanggou Coal Mine[J]. Environmental Earth Sciences,2022,81(14):372.

[11] 陈陆望,任星星,张杰,等. 淮北煤田太原组灰岩水水文地球化学形成作用及反向模拟研究[J]. 煤炭学报,2021,46(12):3999−4009.

CHEN Luwang,REN Xingxing,ZHANG Jie,et al. Hydrogeochemical formation and inverse simulation of limestone groundwater in Carboniferous Taiyuan Formation of Huaibei Coalfield[J]. Journal of China Coal Society,2021,46(12):3999−4009.

[12] ZHANG Fei,JIN Zhangdong,YU Jimin,et al. Hydrogeochemical processes between surface and groundwaters on the northeastern Chinese Loess Plateau:Implications for water chemistry and environmental evolutions in semi-arid regions[J]. Journal of Geochemical Exploration,2015,159:115−128.

[13] 崔佳,陈俊伟,夏中升,等. 水溶蚀作用下水泥–水玻璃双液浆力学性能衰减机理研究[J]. 硅酸盐通报,2023,42(10):3470−3478.

CUI Jia,CHEN Junwei,XIA Zhongsheng,et al. Mechanical property attenuation mechanism of cement-sodium silicate double liquid slurry under water corrosion[J]. Bulletin of the Chinese Ceramic Society,2023,42(10):3470−3478.

[14] 石志远. 复合强富水含水层帷幕薄弱带识别方法与靶向加固技术[J]. 煤炭工程,2022,54(4):57−61.

SHI Zhiyuan. Identification method and target reinforcement technology of weak zone of curtain in multiple media and water-abundance aquifer[J]. Coal Engineering,2022,54(4):57−61.

[15] 陈陆望,郑忻,张杰,等. 基于断层量化隐伏型煤矿基岩含水层水化学空间演化机制研究[J]. 地质学报,2024,98(7):2245−2257.

CHEN Luwang,ZHENG Xin,ZHANG Jie,et al. Study on the spatial evolution mechanism of hydrochemistry in bedrock aquifer of concealed coal mine based on quantification and evaluation of fault[J]. Acta Geologica Sinica,2024,98(7):2245−2257.

[16] XIA Qiwen,HE Jiangtao,LI Binghua,et al. Hydrochemical evolution characteristics and genesis of groundwater under long-term infiltration (2007—2018) of reclaimed water in Chaobai river,Beijing[J]. Water Research,2022,226:119222.

[17] ZHANG Jie,CHEN Luwang,HOU Xiaowei,et al. Multi-isotopes and hydrochemistry combined to reveal the major factors affecting Carboniferous groundwater evolution in the Huaibei Coalfield,North China[J]. Science of the Total Environment,2021,791:148420.

[18] 何晓东. 致密砂岩储层水力压裂中的水岩化学作用机制研究[D]. 西安:长安大学,2023.

HE Xiaodong. Mechanism of chemical interactions between water and rocks during hydraulic fracturing in tight sandstone reservoirs[D]. Xi’an:Chang’an University,2023.

[19] 赵凯月,张鹏,孔祥明,等. 硅酸盐水泥水化动力学模型与试验方法研究进展[J]. 硅酸盐学报,2022,50(6):1728−1761.

ZHAO Kaiyue,ZHANG Peng,KONG Xiangming,et al. Recent progress on Portland cement hydration kinetic models and experimental methods[J]. Journal of the Chinese Ceramic Society,2022,50(6):1728−1761.

[20] 张开来,沈振中,徐力群,等. 考虑渗透溶蚀作用的防渗帷幕耐久性控制指标[J]. 水利学报,2020,51(2):169−179.

ZHANG Kailai,SHEN Zhenzhong,XU Liqun,et al. Durability control index of anti-seepage curtain considering the effect of advection-diffusion-driven leaching[J]. Journal of Hydraulic Engineering,2020,51(2):169−179.

[21] 赵丕琪,孙乾,杨新月,等. 水化硅酸钙凝胶的研究进展[J]. 硅酸盐学报,2024,52(5):1710−1721.

ZHAO Piqi,SUN Qian,YANG Xinyue,et al. Calcium silicate hydrate gels:A short review[J]. Journal of the Chinese Ceramic Society,2024,52(5):1710−1721.

[22] 刘志浩. 硅酸盐水泥水化诱导期的作用机理研究[D]. 广州:广州大学,2023.

LIU Zhihao. Study on the mechanism of hydration induction period of Portland cement[D]. Guangzhou:Guangzhou University,2023.

[23] 李常锁. 趵突泉泉域岩溶水流路径识别与水化学形成机制研究[D]. 武汉:中国地质大学,2023.

LI Changsuo. Identification of karst water flow paths and hydrochemical formation mechanisms in the Baotu Spring watershed[D]. Wuhan:China University of Geosciences,2023.

[24] 苏春利,张雅,马燕华,等. 贵阳市岩溶地下水水化学演化机制:水化学和锶同位素证据[J]. 地球科学,2019,44(9):2829−2838.

SU Chunli,ZHANG Ya,MA Yanhua,et al. Hydrochemical evolution processes of karst groundwater in Guiyang City:Evidences from hydrochemistry and 87Sr/86Sr ratios[J]. Earth Science,2019,44(9):2829−2838.

[25] HUANG Guanxing,SUN Jichao,ZHANG Ying,et al. Impact of anthropogenic and natural processes on the evolution of groundwater chemistry in a rapidly urbanized coastal area,South China[J]. Science of the Total Environment,2013,463:209−221.

[26] 沈照理,朱宛华,钟佐燊. 水文地球化学基础[M]. 北京:地质出版社,1993.

[27] 陈陆望,许冬清,殷晓曦,等. 华北隐伏型煤矿区地下水化学及其控制因素分析:以宿县矿区主要突水含水层为例[J]. 煤炭学报,2017,42(4):996−1004.

CHEN Luwang,XU Dongqing,YIN Xiaoxi,et al. Analysis on hydrochemistry and its control factors in the concealed coal mining area in North China:A case study of dominant inrush aquifers in Suxian mining area[J]. Journal of China Coal Society,2017,42(4):996−1004.

[28] 郭小娇,王慧玮,石建省,等. 白洋淀湿地地下水系统水化学变化特征及演化模式[J]. 地质学报,2022,96(2):656−672.

GUO Xiaojiao,WANG Huiwei,SHI Jiansheng,et al. Hydrochemical characteristics and evolution pattern of groundwater system in Baiyangdian wetland,North China Plain[J]. Acta Geologica Sinica,2022,96(2):656−672.

[29] 周智强,黄奇波,汪玉松,等. 典型岩溶矿区地表水和地下水补给来源及水化学演化机制[J]. 环境科学,2024,45(9):5264−5276.

ZHOU Zhiqiang,HUANG Qibo,WANG Yusong,et al. Recharge sources and hydrochemical evolution mechanism of surface water and groundwater in typical karst mining area[J]. Environmental Science,2024,45(9):5264−5276.

[30] 李朗,黄晓燕,何伟,等. 水文地质单元交界区潜水水化学特征及演化分析:以泰州市区为例[J]. 科学技术与工程,2024,24(6):2265−2275.

LI Lang,HUANG Xiaoyan,HE Wei,et al. Chemical characteristics of phreatic water in the boundary zone of multiple hydrogeological units:A case on study of urban area,Taizhou City[J]. Science Technology and Engineering,2024,24(6):2265−2275.

[31] 吴君毅,刘洪,欧阳渊,等. 螺髻山北麓地下水化学特征与水质评价[J]. 西北地质,2023,56(5):151−164.

WU Junyi,LIU Hong,OUYANG Yuan,et al. Hydrochemical characteristics and water quality assessment of groundwater in northern foothill of Luoji mountains[J]. Northwestern Geology,2023,56(5):151−164.

[32] ZHANG Jie,CHEN Luwang,CHEN Yifei,et al. Discrimination of water-inrush source and evolution analysis of hydrochemical environment under mining in Renlou Coal Mine,Anhui Province,China[J]. Environmental Earth Sciences,2020,79(2):61.

[33] SHI Xiaoyan,WANG Ya,JIAO J J,et al. Assessing major factors affecting shallow groundwater geochemical evolution in a highly urbanized coastal area of Shenzhen City,China[J]. Journal of Geochemical Exploration,2018,184:17−27.

[34] 陈盟,吴勇,高东东,等. 广汉市平原区浅层地下水化学演化及其控制因素[J]. 吉林大学学报(地球科学版),2016,46(3):831−843.

CHEN Meng,WU Yong,GAO Dongdong,et al. Shallow groundwater hydrogeochemical evolution process and controlling factors in plain zone of Guanghan City[J]. Journal of Jilin University (Earth Science Edition),2016,46(3):831−843.

[35] 贾慧. 渭河关中平原段水化学演化机制及流域化学风化研究[D]. 西安:长安大学,2022.

JIA Hui. Study on the evolution of hydrochemistry and chemical weathering of the Weihe River in Guanzhong Plain[D]. Xi’an:Chang’an University,2022.

[36] 屈伸,史浙明,梁向阳,等. 大海则井田多层含水层系统水化学特征及演化规律[J]. 环境化学,2022,41(8):2614−2624.

QU Shen,SHI Zheming,LIANG Xiangyang,et al. Hydrochemical characteristics and evolution of groundwater in multilayer aquifer system in the Dahaize Coalfield[J]. Environmental Chemistry,2022,41(8):2614−2624.

[37] 郭艳,桂和荣,魏久传,等. 注浆工程扰动下煤系砂岩含水层水岩作用机理:以桃园煤矿为例[J]. 煤田地质与勘探,2021,49(1):232−240.

GUO Yan,GUI Herong,WEI Jiuchuan,et al. Mechanism of water rock interaction in coal measure sandstone aquifer disturbed by grouting engineering:A case study of Taoyuan Coal Mine[J]. Coal Geology & Exploration,2021,49(1):232−240.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.