•  
  •  
 

Coal Geology & Exploration

Authors

YAN Xia, China United Coalbed Methane National Engineering Research Center Co. Ltd., Beijing 100095, China; PetroChina Coalbed Methane Company Limited, Beijing 100028, ChinaFollow
XU Fengyin, China United Coalbed Methane National Engineering Research Center Co. Ltd., Beijing 100095, China; PetroChina Coalbed Methane Company Limited, Beijing 100028, ChinaFollow
XIONG Xianyue, China United Coalbed Methane National Engineering Research Center Co. Ltd., Beijing 100095, China; PetroChina Coalbed Methane Company Limited, Beijing 100028, China
WANG Feng, China United Coalbed Methane National Engineering Research Center Co. Ltd., Beijing 100095, China; PetroChina Coalbed Methane Company Limited, Beijing 100028, China
LI Chunhu, China United Coalbed Methane National Engineering Research Center Co. Ltd., Beijing 100095, China; PetroChina Coalbed Methane Company Limited, Beijing 100028, China
ZHANG Jiyuan, State Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, China; School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
XU Borui, China United Coalbed Methane National Engineering Research Center Co. Ltd., Beijing 100095, China; PetroChina Coalbed Methane Company Limited, Beijing 100028, China
CHENG Qianhui, China United Coalbed Methane National Engineering Research Center Co. Ltd., Beijing 100095, China; PetroChina Coalbed Methane Company Limited, Beijing 100028, China
HU Xiong, China United Coalbed Methane National Engineering Research Center Co. Ltd., Beijing 100095, China; PetroChina Coalbed Methane Company Limited, Beijing 100028, China
ZHU Xueguang, China United Coalbed Methane National Engineering Research Center Co. Ltd., Beijing 100095, China; PetroChina Coalbed Methane Company Limited, Beijing 100028, China
LIANG Wei, China United Coalbed Methane National Engineering Research Center Co. Ltd., Beijing 100095, China; PetroChina Coalbed Methane Company Limited, Beijing 100028, China
YUAN Pu, China United Coalbed Methane National Engineering Research Center Co. Ltd., Beijing 100095, China; PetroChina Coalbed Methane Company Limited, Beijing 100028, China
FENG Yanqing, China United Coalbed Methane National Engineering Research Center Co. Ltd., Beijing 100095, China; PetroChina Coalbed Methane Company Limited, Beijing 100028, China
WEI Zhenji, China United Coalbed Methane National Engineering Research Center Co. Ltd., Beijing 100095, China; PetroChina Coalbed Methane Company Limited, Beijing 100028, China

Abstract

Objective Deep coalbed methane (CBM) production enjoys advantages including rapid gas shows, high single-well yield, and continuous resource distribution, which establish deep CBM as a significant target for reserve growth and production addition of natural gas. However, the exploration and production of deep CBM are still confronted with many technical challenges, and there is a lack of studies on key experimental technologies related to the geological characteristics and engineering assessment of deep CBM reservoirs, the occurrence characteristics and production mechanisms of gas and water, the formulation of production systems, and methods for enhanced CBM recovery. Advances in Research Given the characteristics of deep coal seams and CBM, this study identifies four challenges in the exploration and exploitation of deep coal seams: the collection of large coal samples, the high-temperature, high-pressure, and high-stress in-situ conditions, high-precision characterization and desorption of sub-nano- to nano-scale micropores, and the accurate determination of gas content. Furthermore, this study systematically analyzes the advances and challenges in experimental technologies for deep coals, involving the characterization of multi-scale pores and fractures, the assessment of absorption and gas-content properties, the mechanic characteristics and fracture propagation patterns of coals, and the dynamic patterns of fluid occurrence and production post-fracturing. Prospects This study posits seven development directions for deep CBM production and in-situ coal conversion experiments: (1) Clear, direct observation techniques for micropores (< 2 nm) in deep coal seams with ultra-low porosity and permeability, full-scale pore size splicing technology for multiscale pore structure characterized by abundant micropores, a few mesopores, and many macropores, and assessment techniques for pore-fracture connectivity. (2) Isothermal adsorption test technologies for raw coals considering the effects of deep coal seam wettability, fracturing fluid invasion, and high total dissolved solids (TDS) under high-temperature, high-pressure in-situ conditions; (3) Sealed coring devices and in-situ pressure-retaining coring technologies featuring high pressure retaining success rates, heat preservation rates, and traceable gas volume. (4) Nanoscience-based assessment technologies for gas and water occurrence in micropores in deep coal seams under high-temperature and high-pressure multi-field coupling, and experimental technologies for desorption, diffusion, and seepage across nano-micro-millimeter scales. (5) Techniques for developing and testing multifunctional mechanical experiment equipment applicable to in-situ conditions of deep coal seams featuring high stress, low modulus of elasticity, and high Poisson's ratio. (6) Experimental techniques for the purpose of enhancing CBM recovery of deep coal seams, including reservoir stimulation (microwaves, laser, and electric heating), stimulation for permeability enhancement (electromagnetic pulses, pulsed ultrasonic waves, and controlled shockwaves), displacement via CO2 injection, and mechanical pulsation with supercritical CO2. (7) Experimental techniques for in-situ coal conversion and utilization, including pyrolysis, underground coal gasification (UCG), geothermal utilization, and CO2 geological storage. Analyses reveal that there is an urgent need to establish the standards and regulations for the operational procedures of these experimental technologies, as required by objective demand for the exploration and production of deep CBM. These experimental technologies aim is to achieve environment protection, permeability enhancement, desorption promotion, and CO2 storage, thus providing vital support for the efficient production and utilization of deep CBM and coals and helping attain the goals of peak carbon dioxide emissions and carbon neutrality.

Keywords

deep coalbed methane (CBM), experiment, sub-nano to micro-nano, pore-fracture characterization, in-situ occurrence, desorption and seepage, gas content test, recovery enhancement

DOI

10.12363/issn.1001-1986.25.01.0046

Reference

[1] 徐凤银,闫霞,林振盘,等. 我国煤层气高效开发关键技术研究进展与发展方向[J]. 煤田地质与勘探,2022,50(3):1−14.

XU Fengyin,YAN Xia,LIN Zhenpan,et al. Research progress and development direction of key technologies for efficient coalbed methane development in China[J]. Coal Geology & Exploration,2022,50(3):1−14.

[2] 徐凤银,闫霞,李曙光,等. 鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策[J]. 煤田地质与勘探,2023,51(1):115−130.

XU Fengyin,YAN Xia,LI Shuguang,et al. Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos Basin[J]. Coal Geology & Exploration,2023,51(1):115−130.

[3] 徐凤银,侯伟,熊先钺,等. 中国煤层气产业现状与发展战略[J]. 石油勘探与开发,2023,50(4):669−682.

XU Fengyin,HOU Wei,XIONG Xianyue,et al. The status and development strategy of coalbed methane industry in China[J]. Petroleum Exploration and Development,2023,50(4):669−682.

[4] 闫霞,徐凤银,聂志宏,等. 深部微构造特征及其对煤层气高产“甜点区”的控制:以鄂尔多斯盆地东缘大吉地区为例[J]. 煤炭学报,2021,46(8):2426−2439.

YAN Xia,XU Fengyin,NIE Zhihong,et al. Microstructure characteristics of Daji area in east Ordos Basin and its control over the high yield dessert of CBM[J]. Journal of China Coal Society,2021,46(8):2426−2439.

[5] 闫霞,熊先钺,李曙光,等. 深层煤岩气水平井各段产出贡献及其主控因素:以鄂尔多斯盆地东缘大宁–吉县区块为例[J]. 天然气工业,2024,44(10):80−92.

YAN Xia,XIONG Xianyue,LI Shuguang,et al. Production contributions of deep CBM horizontal well sections and their controlling factors:A case study of Daning–Jixian area,eastern Ordos Basin[J]. Natural Gas Industry,2024,44(10):80−92.

[6] 聂志宏,徐凤银,时小松,等. 鄂尔多斯盆地东缘深部煤层气开发先导试验效果与启示[J]. 煤田地质与勘探,2024,52(2):1−12.

NIE Zhihong,XU Fengyin,SHI Xiaosong,et al. Outcomes and implications of pilot tests for deep coalbed methane production on the eastern margin of the Ordos Basin[J]. Coal Geology & Exploration,2024,52(2):1−12.

[7] 赵喆,徐旺林,赵振宇,等. 鄂尔多斯盆地石炭系本溪组煤岩气地质特征与勘探突破[J]. 石油勘探与开发,2024,51(2):234−247.

ZHAO Zhe,XU Wanglin,ZHAO Zhenyu,et al. Geological characteristics and exploration breakthroughs of coal rock gas in Carboniferous Benxi Formation,Ordos Basin,NW China[J]. Petroleum Exploration and Development,2024,51(2):234−247.

[8] 刘建忠,朱光辉,刘彦成,等. 鄂尔多斯盆地东缘深部煤层气勘探突破及未来面临的挑战与对策:以临兴–神府区块为例[J]. 石油学报,2023,44(11):1827−1839.

LIU Jianzhong,ZHU Guanghui,LIU Yancheng,et al. Breakthrough,future challenges and countermeasures of deep coalbed methane in the eastern margin of Ordos Basin:A case study of Linxing–Shenfu Block[J]. Acta Petrolei Sinica,2023,44(11):1827−1839.

[9] 兰浩,杨兆彪,仇鹏,等. 新疆准噶尔盆地白家海凸起深部煤层气勘探开发进展及启示[J]. 煤田地质与勘探,2024,52(2):13−22.

LAN Hao,YANG Zhaobiao,QIU Peng,et al. Exploration and exploitation of deep coalbed methane in the Baijiahai Uplift,Junggar Basin:Progress and its implications[J]. Coal Geology & Exploration,2024,52(2):13−22.

[10] 康永尚,闫霞,皇甫玉慧,等. 深部超饱和煤层气藏概念及主要特点[J]. 石油学报,2023,44(11):1781−1790.

KANG Yongshang,YAN Xia,HUANGFU Yuhui,et al. Concept and main characteristics of deep oversaturated coalbed methane reservoir[J]. Acta Petrolei Sinica,2023,44(11):1781−1790.

[11] 中国煤炭工业协会. 2022煤炭行业发展年度报告[R]. 北京:中国煤炭工业协会,2023.

[12] 杨兆彪,秦勇,高弟,等. 超临界条件下煤层甲烷视吸附量、真实吸附量的差异及其地质意义[J]. 天然气工业,2011,31(4):13−16.

YANG Zhaobiao,QIN Yong,GAO Di,et al. Differences between apparent and true adsorption quantity of coalbed methane under supercritical conditions and their geological significance[J]. Natural Gas Industry,2011,31(4):13−16.

[13] 邓泽,王红岩,姜振学,等. 深部煤储层孔裂隙结构对煤层气赋存的影响:以鄂尔多斯盆地东缘大宁–吉县区块为例[J]. 煤炭科学技术,2024,52(8):106−123.

DENG Ze,WANG Hongyan,JIANG Zhenxue,et al. Influence of deep coal pore and fracture structure on occurrence of coalbed methane:A case study of Daning–Jixian Block in eastern margin of Ordos Basin[J]. Coal Science and Technology,2024,52(8):106−123.

[14] 马勇,钟宁宁,黄小艳,等. 聚集离子束扫描电镜(FIB–SEM)在页岩纳米级孔隙结构研究中的应用[J]. 电子显微学报,2014,33(3):251−256.

MA Yong,ZHONG Ningning,HUANG Xiaoyan,et al. The application of focused ion beam scanning electron microscope (FIB–SEM) to the nanometer–sized pores in shales[J]. Journal of Chinese Electron Microscopy Society,2014,33(3):251−256.

[15] 王相龙,潘结南,王凯,等. 微米CT扫描尺度下构造煤微裂隙结构特征及其对渗透性的控制[J]. 煤炭学报,2023,48(3):1325−1334.

WANG Xianglong,PAN Jienan,WANG Kai,et al. Characteristics of micro–CT scale pore–fracture of tectonic ally deformed coal and their controlling effect on permeability[J]. Journal of China Coal Society,2023,48(3):1325−1334.

[16] 田丰华,李小刚,朱文涛,等. 大宁–吉县区块8号煤层薄层夹矸螺旋CT扫描精细表征[J]. 能源与环保,2023,45(10):63−68.

TIAN Fenghua,LI Xiaogang,ZHU Wentao,et al. Fine characterization of thin layer gangue inclusion in No. 8 coal seam of Daning–Jixian Block by spiral CT scanning[J]. China Energy and Environmental Protection,2023,45(10):63−68.

[17] 邓泽,王红岩,姜振学,等. 页岩和煤岩的孔隙结构差异及其天然气运移机理[J]. 天然气工业,2022,42(11):37−49.

DENG Ze,WANG Hongyan,JIANG Zhenxue,et al. Pore structure differences between shale and coal and their gas migration mechanisms[J]. Natural Gas Industry,2022,42(11):37−49.

[18] 刘世奇,王鹤,王冉,等. 煤层孔隙与裂隙特征研究进展[J]. 沉积学报,2021,39(1):212−230.

LIU Shiqi,WANG He,WANG Ran,et al. Research advances on characteristics of pores and fractures in coal seams[J]. Acta Sedimentologica Sinica,2021,39(1):212−230.

[19] 葛兆龙,王浩明,周哲,等. 基于实时核磁共振的煤岩气驱水流动特性试验研究[J]. 采矿与安全工程学报,2023,40(1):194−203.

GE Zhaolong,WANG Haoming,ZHOU Zhe,et al. Experimental study on flow characteristics of gas flooding water in coal by real–time nuclear magnetic resonance[J]. Journal of Mining & Safety Engineering,2023,40(1):194−203.

[20] 姚艳斌,刘大锰,蔡益栋,等. 基于NMR和X–CT的煤的孔裂隙精细定量表征[J]. 中国科学:地球科学,2010,40(11):1598−1607.

YAO Yanbin,LIU Dameng,CAI Yidong,et al. Advanced characterization of pores and fractures in coals by nuclear magnetic resonance and X–ray computed tomography[J]. Science China (Earth Sciences),2010,40(11):1598−1607.

[21] 冯文青,魏强,崔福田,等. 深部煤甲烷吸附性能及含气量预测分析[J]. 煤炭技术,2021,40(9):131−134.

FENG Wenqing,WEI Qiang,CUI Futian,et al. Methane adsorption capacity and gas content prediction and analysis of deep–buried coal[J]. Coal Technology,2021,40(9):131−134.

[22] 殷珂,傅雪海,陈峰,等. 准南阜康矿区低煤化烟煤高温高压吸附实验及深部吸附气含量预测[J]. 中国科技论文,2022,17(1):72−77.

YIN Ke,FU Xuehai,CHEN Feng,et al. High–temperature and high–pressure adsorption experiment and deep adsorbed gas content prediction of low coal bituminous coal in Fukang mining area of south Junggar Basin[J]. China Sciencepaper,2022,17(1):72−77.

[23] 熊先钺,闫霞,徐凤银,等. 深部煤层气多要素耦合控制机理、解吸规律与开发效果剖析[J]. 石油学报,2023,44(11):1812−1826.

XIONG Xianyue,YAN Xia,XU Fengyin,et al. Analysis of multi–factor coupling control mechanism,desorption law and development effect of deep coalbed methane[J]. Acta Petrolei Sinica,2023,44(11):1812−1826.

[24] 邓泽,刘洪林,康永尚. 煤层气含气量测试中损失气量的估算方法[J]. 天然气工业,2008,28(3):85−86.

DENG Ze,LIU Honglin,KANG Yongshang. Estimation methods of lost gas in coalbed gas content testing[J]. Natural Gas Industry,2008,28(3):85−86.

[25] 薛晓辉,叶建国,孙齐,等. 绳索取心工艺对煤层气损失时间的影响分析[J]. 煤炭科学技术,2012,40(12):108−110.

XUE Xiaohui,YE Jianguo,SUN Qi,et al. Analysis on wire–rope coring technique affected to lost time of coal bed methane[J]. Coal Science and Technology,2012,40(12):108−110.

[26] 周敏. 煤层气USBM含气量测试过程中损失气量的物理模拟实验及校正方法研究[D]. 北京:中国地质大学(北京),2014.

ZHOU Min. Study of physics simulation experiment and calibration methods about the loss gas in CBM USBM gas content testing process[D]. Beijing:China University of Geosciences (Beijing),2014.

[27] 李红涛,齐黎明,陈学习. 密闭液封堵条件下的瓦斯解吸规律实验研究[J]. 中国安全生产科学技术,2012,8(3):18−21.

LI Hongtao,QI Liming,CHEN Xuexi. Experiment research on the gas desorption rule of sealing fluid enveloping coal core[J]. Journal of Safety Science and Technology,2012,8(3):18−21.

[28] 景兴鹏. 机械密闭取芯瓦斯含量测定集成技术研究[J]. 中国安全生产科学技术,2015,11(11):59−63.

JING Xingpeng. Study on integrate technique of mechanical sealed coring and methane content measuring[J]. Journal of Safety Science and Technology,2015,11(11):59−63.

[29] 谢和平,崔鹏飞,尚德磊,等. 深部煤层原位保压取心技术原理与瓦斯参数测定研究进展[J]. 煤田地质与勘探,2023,51(8):1−12.

XIE Heping,CUI Pengfei,SHANG Delei,et al. Research advances on the in–situ pressure–preserved coring and gas parameter determination for deep coal seams[J]. Coal Geology & Exploration,2023,51(8):1−12.

[30] 朱庆忠,苏雪峰,杨立文,等. GW–CP194–80M型煤层气双保压取心工具研制及现场试验[J]. 特种油气藏,2020,27(5):139−144.

ZHU Qingzhong,SU Xuefeng,YANG Liwen,et al. Development and field test of GW–CP194–80M CBM dual pressure coring tool[J]. Special Oil and Gas Reservoirs,2020,27(5):139−144.

[31] 王西贵,邹德永,杨立文,等. 煤层气保温保压保形取心工具研制及现场应用[J]. 石油钻探技术,2021,49(3):94−99.

WANG Xigui,ZOU Deyong,YANG Liwen,et al. Development and field application of a coalbed methane coring tool with pressure maintenance,thermal insulation,and shape preservation capabilities[J]. Petroleum Drilling Techniques,2021,49(3):94−99.

[32] 桑树勋,郑司建,王建国,等. 岩石力学地层新方法在深部煤层气勘探开发“甜点”预测中的应用[J]. 石油学报,2023,44(11):1840−1853.

SANG Shuxun,ZHENG Sijian,WANG Jianguo,et al. Application of new rock mechanical stratigraphy in sweet spot prediction for deep coalbed methane exploration and development[J]. Acta Petrolei Sinica,2023,44(11):1840−1853.

[33] 王江涛. 基于层理效应的穿层钻孔煤层瓦斯渗流特性实验研究[D]. 太原:太原理工大学,2022.

WANG Jiangtao. Experimental research on gas seepage characteristics of coal seam with cross–measure borehole based on bedding effect[D]. Taiyuan:Taiyuan University of Technology,2022.

[34] 侯东升,梁卫国,张倍宁,等. CO2驱替煤层CH4中混合气体渗流规律的研究[J]. 煤炭学报,2019,44(11):3463−3471.

HOU Dongsheng,LIANG Weiguo,ZHANG Beining,et al. Seepage law of mixed gases in CO2 displacement of coal seam CH4[J]. Journal of China Coal Society,2019,44(11):3463−3471.

[35] 李相臣,康毅力,罗平亚. 应力对煤岩裂缝宽度及渗透率的影响[J]. 煤田地质与勘探,2009,37(1):29−32.

LI Xiangchen,KANG Yili,LUO Pingya. The effects of stress on fracture and permeability in coal bed[J]. Coal Geology & Exploration,2009,37(1):29−32.

[36] 潘玉婷,赵耀江,郭胜亮,等. 温度作用煤岩力学渗流特性演化规律试验研究[J]. 中国矿业,2021,30(2):209−213.

PAN Yuting,ZHAO Yaojiang,GUO Shengliang,et al. Experimental study on evolution law of seepage characteristics of coal–rock mechanics under temperature action[J]. China Mining Magazine,2021,30(2):209−213.

[37] ZHANG Guanglei,RANJITH P G,HUPPERT H E. Direct evidence of coal swelling and shrinkage with injecting CO2 and N2 using in–situ synchrotron X–ray microtomography[J]. Engineering,2022,18(11):88−95.

[38] HUANG Qiming,LI Jun,LIU Shimin,et al. Experimental study on the adverse effect of gel fracturing fluid on gas sorption behavior for Illinois coal[J]. International Journal of Coal Science & Technology,2021,8:1250−1261.

[39] LI Xiaowei,ZHAO Dong,LI Xiangchun,et al. Heat–dependent properties of methane diffusion in coal:An experimental study and mechanistic analysis[J]. Environmental Science and Pollution Research,2024,31:56153−56173.

[40] XU Hao,WANG Gang,HUANG Qiming,et al. Nondimensional analysis and application of gas desorption and diffusion driven by density gradient in coal particles[J]. Environmental Science and Pollution Research,2023,30(58):121881−121894.

[41] GAO Qi,LIU Jishan,HUANG Yifan,et al. A critical review of coal permeability models[J]. Fuel,2022,326:125124.

[42] GERAMI A,ARMSTRONG R T,JOHNSTON B,et al. Coal–on–a–chip:Visualizing flow in coal fractures[J]. Energy & Fuels,2017,31(10):10393−10403.

[43] 陈维堃,腾格尔,张春贺,等. 页岩纳米有机孔结构表征技术研究进展[J]. 岩矿测试,2022,41(6):906−919.

CHEN Weikun,TENGER,ZHANG Chunhe,et al. A review of research progress on characterization technology of nano organic pore structure in shale[J]. Rock and Mineral Analysis,2022,41(6):906−919.

[44] 张振. 非接触式光学测量方法在材料动态性能测试中的应用研究[D]. 宁波:宁波大学,2018.

ZHANG Zhen. Application of non–contact optical measurement method in investigating the dynamic mechanical behaviors of materials[D]. Ningbo:Ningbo University,2018.

[45] 宝剑光,秦强,柴葳,等. 基于非接触法的1200 ℃高温应变测试技术研究[J]. 科学技术与工程,2017,17(6):117−121.

BAO Jianguang,QIN Qiang,CHAI Wei,et al. Study of non–contract metrology for deformation measurement at 1200 ℃[J]. Science Technology and Engineering,2017,17(6):117−121.

[46] 李锋. 振动波与人工电场提高煤层气采收率实验及原理[D]. 秦皇岛:燕山大学,2020.

LI Feng. Experiment and principle of improving coalbed methane recovery by vibration wave and artificial electric field[D]. Qinhuangdao:Yanshan University,2020.

[47] 解镕嘉. 突出煤层密闭区域电热高温场影响因素及应用研究[D]. 贵阳:贵州大学,2021.

XIE Rongjia. Study on influencing factors and application of electric heating high temperature field in confined area of outburst coal seam[D]. Guiyang:Guizhou University,2021.

[48] 林海飞,仇悦,韩双泽,等. 脉冲超声波激励对煤的孔隙全尺度改造效应[J]. 煤田地质与勘探,2023,51(8):139−149.

LIN Haifei,QIU Yue,HAN Shuangze,et al. Stimulation effect of pulsed ultrasonic excitation on coal pores with full–scale pore sizes[J]. Coal Geology & Exploration,2023,51(8):139−149.

[49] 张书金,陈蒙磊,张锡兵,等. 可控冲击波煤层增透技术应用研究[J]. 煤炭技术,2023,42(9):129−133.

ZHANG Shujin,CHEN Menglei,ZHANG Xibing,et al. Application of controllable shock wave to increase coal seam permeability[J]. Coal Technology,2023,42(9):129−133.

[50] 刘佳佳,张云龙,聂子硕,等. 超临界CO2脉动压裂–渗流耦合试验系统研制与应用[J]. 煤田地质与勘探,2024,52(6):12−20.

LIU Jiajia,ZHANG Yunlong,NIE Zishuo,et al. Development and application of a supercritical CO2 pulsed fracturing–seepage coupling test system[J]. Coal Geology & Exploration,2024,52(6):12−20.

[51] 王双明,师庆民,孙强,等. 富油煤原位热解技术战略价值与科学探索[J]. 煤田地质与勘探,2024,52(7):1−13.

WANG Shuangming,SHI Qingmin,SUN Qiang,et al. Strategic value and scientific exploration of in–situ pyrolysis of tar–rich coals[J]. Coal Geology & Exploration,2024,52(7):1−13.

[52] 张吉雄,汪集暘,周楠,等. 深部矿山地热与煤炭资源协同开发技术体系研究[J]. 工程科学学报,2022,44(10):1682−1693.

ZHANG Jixiong,WANG Jiyang,ZHOU Nan,et al. Collaborative mining system of geothermal energy and coal resources in deep mines[J]. Chinese Journal of Engineering,2022,44(10):1682−1693.

[53] 韩思杰,桑树勋,段飘飘,等. 改进的深部煤层CO2地质封存潜力评价方法:以沁水盆地郑庄区块3# 煤层为例[J]. 中国矿业大学学报,2023,52(4):772−788.

HAN Sijie,SANG Shuxun,DUAN Piaopiao,et al. Modified assessment method of CO2 geologic storage capacity in deep coal and its application in the Zhengzhuang Block,Qinshui Basin[J]. Journal of China University of Mining & Technology,2023,52(4):772−788.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.