•  
  •  
 

Coal Geology & Exploration

Authors

WANG Xiaohui, China Coal Research Institute, Beijing 100013, China; CCTEG Xi’an Research Institute (Group) Co., Ltd., Xi’an 710077, China; Xi’an CCTEG Transparent Geology Technology Co., Ltd., Xi’an 712000, China; State Key Laboratory of Intelligent Coal Mining and Strata Control, Beijing 100013, ChinaFollow
LIU Zaibin, China Coal Research Institute, Beijing 100013, China; CCTEG Xi’an Research Institute (Group) Co., Ltd., Xi’an 710077, China; Xi’an CCTEG Transparent Geology Technology Co., Ltd., Xi’an 712000, China; State Key Laboratory of Intelligent Coal Mining and Strata Control, Beijing 100013, ChinaFollow
ZHANG Dongliang, Xi’an CCTEG Transparent Geology Technology Co., Ltd., Xi’an 712000, China; State Key Laboratory of Intelligent Coal Mining and Strata Control, Beijing 100013, China
MA Liang, CCTEG Xi’an Research Institute (Group) Co., Ltd., Xi’an 710077, China; Xi’an CCTEG Transparent Geology Technology Co., Ltd., Xi’an 712000, China; State Key Laboratory of Intelligent Coal Mining and Strata Control, Beijing 100013, China
CHEN Baohui, Xi’an CCTEG Transparent Geology Technology Co., Ltd., Xi’an 712000, China; State Key Laboratory of Intelligent Coal Mining and Strata Control, Beijing 100013, China
LEI Xiaorong, Xi’an CCTEG Transparent Geology Technology Co., Ltd., Xi’an 712000, China; State Key Laboratory of Intelligent Coal Mining and Strata Control, Beijing 100013, China
BAI Baojun, Xi’an CCTEG Transparent Geology Technology Co., Ltd., Xi’an 712000, China; State Key Laboratory of Intelligent Coal Mining and Strata Control, Beijing 100013, China
YAN Junsheng, China Coal Research Institute, Beijing 100013, China; CCTEG Xi’an Research Institute (Group) Co., Ltd., Xi’an 710077, China; Xi’an CCTEG Transparent Geology Technology Co., Ltd., Xi’an 712000, China; State Key Laboratory of Intelligent Coal Mining and Strata Control, Beijing 100013, China

Abstract

Background A 3D geological model of a coal mine serves as an essential prerequisite to guiding the safe and efficient production of coal mines, holding great significance for precise coal mining and geological guarantee. Especially in complex geologic conditions, the failure of geological models to accurately describe the relationship between structures and strata will affect the mining area planning, mining processes, and production efficiency during the production of coal mines. Methods With the Qipanjing Coal Mine in the Zhuozishan Coalfield, Inner Mongolia, as an example, this study investigated the technology for high-accuracy 3D geological modeling of coal mines based on field geological data, fault results, and verification outcomes. First, geological data were integrated using methods like spatial registration, cross-validation, and joint inversion to obtain more accurate modeling data. Second, the sedimentary evolutionary characteristics and structural developmental patterns were determined by investigating the sedimentary tectonic patterns. Third, 3D geological models were constructed using the triangulated irregular network-generalized tri-prism (TIN-GTP) algorithm.Results and Conclusions The results show that the TIN-GTP algorithm-based technique for modeling can simulate any complex geological bodies in an effective, accurate, and rapid manner, creating favorable conditions for addressing issues such as stratigraphic unconformities, stratigraphic pinch-out, coal seam bifurcation, and fault cutting. Furthermore, geological models on varying scales like the mine, mining area, and mining face combined with its roof and floor were built for the Qipanjing Coal Mine, providing significant data for the geological transparency and intelligent mining of coal mines. It has been verified that the errors of all the models are below 0.2 m, with 95% falling within the range of 0 to 0.1 m, demonstrating the advanced and rational nature of the modeling technique. The research findings are of significant importance for enhancing the safety, efficiency, and sustainability of coal mining operations.

Keywords

3D geological modeling, TIN-GTP algorithm, special geological phenomenon, Qipanjing Coal Mine

DOI

10.12363/issn.1001-1986.24.04.0222

Reference

[1] 王国法,张建中,薛国华,等. 煤矿回采工作面智能地质保障技术进展与思考[J]. 煤田地质与勘探,2023,51(2):12−26.

WANG Guofa,ZHANG Jianzhong,XUE Guohua,et al. Progress and reflection of intelligent geological guarantee technology in coal mining face[J]. Coal Geology & Exploration,2023,51(2):12−26.

[2] 王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1−27.

WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1−27.

[3] 王国法,张德生. 煤炭智能化综采技术创新实践与发展展望[J]. 中国矿业大学学报,2018,47(3):459−467.

WANG Guofa,ZHANG Desheng. Innovation practice and development prospect of intelligent fully mechanized technology for coal mining[J]. Journal of China University of Mining & Technology,2018,47(3):459−467.

[4] 袁亮. 煤炭精准开采科学构想[J]. 煤炭学报,2017,42(1):1−7.

YUAN Liang. Scientific conception of precision coal mining[J]. Journal of China Coal Society,2017,42(1):1−7.

[5] 王国法,刘峰,孟祥军,等. 煤矿智能化(初级阶段)研究与实践[J]. 煤炭科学技术,2019,47(8):1−36.

WANG Guofa,LIU Feng,MENG Xiangjun,et al. Research and practice on intelligent coal mine construction (primary stage)[J]. Coal Science and Technology,2019,47(8):1−36.

[6] 彭苏萍. 我国煤矿安全高效开采地质保障系统研究现状及展望[J]. 煤炭学报,2020,45(7):2331−2345.

PENG Suping. Current status and prospects of research on geological assurance system for coal mine safe and high efficient mining[J]. Journal of China Coal Society,2020,45(7):2331−2345.

[7] 董书宁,刘再斌,程建远,等. 煤炭智能开采地质保障技术及展望[J]. 煤田地质与勘探,2021,49(1):21−31.

DONG Shuning,LIU Zaibin,CHENG Jianyuan,et al. Technologies and prospect of geological guarantee for intelligent coal mining[J]. Coal Geology & Exploration,2021,49(1):21−31.

[8] 王双明,刘浪,朱梦博,等. “双碳”目标下煤炭绿色低碳发展新思路[J]. 煤炭学报,2024,49(1):152−171.

WANG Shuangming,LIU Lang,ZHU Mengbo,et al. New way for green and low-carbon development of coal industry under the target of “daul-carbon”[J]. Journal of China Coal Society,2024,49(1):152−171.

[9] 刘再斌,董书宁,李鹏,等. 智能开采透明工作面技术架构与展望[J]. 智能矿山,2020(1):46−51.

LIU Zaibin,DONG Shuning,LI Peng,et al. Intelligent mining transparent working face technology architecture and prospects[J]. Journal of Intelligent Mine,2020(1):46−51.

[10] 王国法,庞义辉,任怀伟,等. 矿山智能化建设的挑战与思考[J]. 智能矿山,2022,3(10):2−15.

WANG Guofa,PANG Yihui,REN Huaiwei,et al. Challenges and reflections on the intelligent construction of mines[J]. Journal of Intelligent Mine,2022,3(10):2−15.

[11] 袁亮,张平松. 煤炭精准开采透明地质条件的重构与思考[J]. 煤炭学报,2020,45(7):2346−2356.

YUAN Liang,ZHANG Pingsong. Framework and thinking of transparent geological conditions for precise mining of coal[J]. Journal of China Coal Society,2020,45(7):2346−2356.

[12] LEMON A M,JONES N L. Building solid models from boreholes and user-defined cross-sections[J]. Computers & Geosciences,2003,29(5):547−555.

[13] 武强,徐华. 三维地质建模与可视化方法研究[J]. 中国科学D辑,2004,34(1):54−60.

WU Qiang,XU Hua. Research on 3D geological modeling and visualization methods[J]. Scientia Sinica (Terrae),2004,34(1):54−60.

[14] 李青元,张洛宜,曹代勇,等. 三维地质建模的用途、现状、问题、趋势与建议[J]. 地质与勘探,2016,52(4):759−767.

LI Qingyuan,ZHANG Luoyi,CAO Daiyong,et al. Usage,status,problems,trends and suggestions of 3D geological modeling[J]. Geology and Exploration,2016,52(4):759−767.

[15] 吴志春,郭福生,林子瑜,等. 三维地质建模中的多源数据融合技术与方法[J]. 吉林大学学报(地球科学版),2016,46(6):1895−1913.

WU Zhichun,GUO Fusheng,LIN Ziyu,et al. Technology and method of multi-data merging in 3D geological modeling[J]. Journal of Jilin University (Earth Science Edition),2016,46(6):1895−1913.

[16] 吴冲龙,毛小平,田宜平,等. 三维数字盆地构造–地层格架模拟技术[J]. 地质科技情报,2006,25(4):1−8.

WU Chonglong,MAO Xiaoping,TIAN Yiping,et al. Digital basins and their 3D visualization modeling[J]. Bulletin of Geological Science and Technology,2006,25(4):1−8.

[17] 郭甲腾,刘寅贺,韩英夫,等. 基于机器学习的钻孔数据隐式三维地质建模方法[J]. 东北大学学报(自然科学版),2019,40(9):1337−1342.

GUO Jiateng,LIU Yinhe,HAN Yingfu,et al. Implicit 3 D geological modeling method for borehole data based on machine learning[J]. Journal of Northeastern University (Natural Science),2019,40(9):1337−1342.

[18] GUO Jiateng,WANG Jiangmei,WU Lixin,et al. Explicit-implicit-integrated 3-D geological modelling approach:A case study of the Xianyan Demolition Volcano (Fujian,China)[J]. Tectonophysics,2020,795:228648.

[19] HOULDING SW. 3D gepscience modeling. Computer techniques for geological Characterization[M]. Berlin Heidelberg: Springer Science&Business Media,1994.

[20] 李德仁,李清泉. 一种三维GIS混合数据结构研究[J]. 测绘学报,1997,26(2):128−133.

LI Deren,LI Qingquan. Study on a hybrid data structure in 3d GIS[J]. Acta Geodaetica et Cartographica Sinica,1997,26(2):128−133.

[21] 宋关福,钟耳顺,周芹,等. 通用三维GIS场数据模型研究与实践[J]. 测绘地理信息,2020,45(2):1−7.

SONG Guanfu,ZHONG Ershun,ZHOU Qin,et al. Research and practice on general 3D field data model in GIS[J]. Journal of Geomatics,2020,45(2):1−7.

[22] 程建远,刘文明,朱梦博,等. 智能开采透明工作面地质模型梯级优化试验研究[J]. 煤炭科学技术,2020,48(7):118−126.

CHENG Jianyuan,LIU Wenming,ZHU Mengbo,et al. Experimental study on cascade optimization of geological models in intelligent mining transparency working face[J]. Coal Science and Technology,2020,48(7):118−126.

[23] 刘再斌,刘程,刘文明,等. 透明工作面多属性动态建模技术[J]. 煤炭学报,2020,45(7):2628−2635.

LIU Zaibin,LIU Cheng,LIU Wenming,et al. Multi-attribute dynamic modeling technique for transparent working face[J]. Journal of China Coal Society,2020,45(7):2628−2635.

[24] 谷保泽,代振华,李明星,等. 透明地质保障技术构建方法:以乌海矿区为例[J]. 煤田地质与勘探,2022,50(1):136−143.

GU Baoze,DAI Zhenhua,LI Mingxing,et al. Construction method on transparent geological guarantee technologies:A case study of Wuhai Mining Area[J]. Coal Geology & Exploration,2022,50(1):136−143.

[25] 宋秋艳. 不规则三角网及其可视化实现[D]. 长沙:中南大学,2008.

SONG Qiuyan. Triangulated irregular network and its visualization implementation[D]. Changsha:Central South University,2008.

[26] 车德福,陈学习,吴立新,等. 基于广义三棱柱体元的三维地层建模方法[J]. 辽宁工程技术大学学报,2006,25(1):36−38.

CHE Defu,CHEN Xuexi,WU Lixin,et al. 3D stratum modeling method based on generalized tri-prism volume element[J]. Journal of Liaoning Technical University (Natural Science),2006,25(1):36−38.

[27] 蔡思敏,任伟中,冯亮,等. 基于GTP-TEN的复杂地质体三维混合建模[J]. 岩石力学与工程学报,2023,42(2):441−449.

CAI Simin,REN Weizhong,FENG Liang,et al. 3D hybrid modeling of complex geological bodies based on GTP-TEN[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(2):441−449.

[28] 安林,韩保山,李鹏,等. 面向透明工作面的地质建模插值误差分析[J]. 煤田地质与勘探,2022,50(6):184−189.

AN Lin,HAN Baoshan,LI Peng,et al. Research on interpolation error analysis of geological modeling of intelligent working face[J]. Coal Geology & Exploration,2022,50(6):184−189.

[29] 李鹏,程建远. 采掘工作面地质信息数字孪生技术[J]. 煤田地质与勘探,2022,50(11):174−186.

LI Peng,CHENG Jianyuan. Digital twin technology of geological information in mining and excavation working face[J]. Coal Geology & Exploration,2022,50(11):174−186.

[30] 张国俊,黄金荣,鲁欣,等. 基于构造物理模拟实验的桌子山煤田棋盘井井田奥灰边界构造因素分析[J]. 中国煤炭地质,2022,34(2):10−13.

ZHANG Guojun,HUANG Jinrong,LU Xin,et al. Ordovician limestone boundary structural factor analysisin qipanjing minefield,zhuozishan coalfield based on tectonic physical simulation experiment[J]. Coal Geology of China,2022,34(2):10−13.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.