Coal Geology & Exploration
Abstract
Significance As coal mining expands into deep parts, karst collapse pillars have become one of the most concealed disaster-causing geological factors in coal mining from mines in North China. The pillar wall angle of a collapse pillar serves as an important index used to describe the morphology of the collapse pillar. Methods and Results With 265 karst collapse pillars cut by the fully mechanized mining of the upper and lower coal seams in the Xishan coalfield as the data source, this study extracted the geological information contained in the pillar wall angles of karst collapse pillars in the Xishan coalfield through zoning, making statistics, function construction, and geological analogy, obtaining the following insights: (1) The collapse pillars in the Xishan coalfield exhibit an average pillar wall angle of 82.49°, with over 50% of them manifesting pillar wall angles ranging between 85° and 90°. Their average pillar wall angles increase gradually from 82.05° to 87.57° from northwest to southeast. (2) The wall angles of collapse pillars in the Xishan coalfield are inversely proportional to the areas of the collapse pillars revealed by the No. 8 coal seam. Based on this relationship, the collapse pillars can be categorized into completely collapsed pillars (90°‒85°), less completely collapsed pillars (85°‒81°), and incompletely collapsed pillars (< 81°). Correspondingly, collapse pillars in the No. 2 coal seam exhibit areas of < 556 m2, 556‒1 700 m2, and > 1 700 m2 and equivalent radii of < 13.3 m, 13.3-23.3 m, and > 23.3 m. Furthermore, collapse pillars in the No. 8 coal seam have areas of < 1 250 m2, 1250‒2750 m2, and > 2 750 m2 and equivalent radii of < 20 m, 20‒30 m, and > 30 m. The completely collapsed pillars generally exhibit cavities on their tops and loose structures, which can connect fracture water in the roofs to water in cavities on pillar tops and confined Ordovician limestone water in the floors. Therefore, completely collapsed pillars are significant hydraulically conductive collapse pillars in the Xishan coalfield. Conclusions The analogy with rainfall in the geological history reveals that the karst collapse pillars in the Xishan coalfield, exhibiting the characteristics of karst sinkholes and caves in southern China, might have been formed during the Paleo-Oligocene with hot humid climates. During this period, CO2 in the atmosphere was absorbed due to intense karstification and was then locked in sedimentary areas. This might be an important reason for the sharp decrease in global CO2 concentration in the atmosphere.
Keywords
Xishan coalfield, karst collapse pillar, pillar wall angle, completely collapsed collapse pillar, formation time
DOI
10.12363/issn.1001-1986.24.03.0176
Recommended Citation
ZHAO Jingui, WANG Jiangwei, YANG Gaofeng,
et al.
(2024)
"Pillar wall angles of karst collapse pillars in the Xishan coalfield: Characteristics and implications,"
Coal Geology & Exploration: Vol. 52:
Iss.
9, Article 4.
DOI: 10.12363/issn.1001-1986.24.03.0176
Available at:
https://cge.researchcommons.org/journal/vol52/iss9/4
Reference
[1] 赵金贵,郭敏泰,李文生. 西山煤田岩溶陷落柱柱体形态与组构特征[J]. 煤炭学报,2020,45(7):2389−2398.
ZHAO Jingui,GUO Mintai,LI Wensheng. Morphological and fabric characteristics of Karst collapse Pillars in Xishan Coalfield[J]. Journal of China Coal Society,2020,45(7):2389−2398.
[2] 章程,蒋忠诚,Groves C,等. 岩溶IGCP国际合作30年与岩溶关键带研究展望[J]. 中国岩溶,2019,38(3):301−306.
ZHANG Cheng,JIANG Zhongcheng,GROVES C,et al. 30 years international cooperation with IGCP and perspectives of Karst critical zone research[J]. Carsologica Sinica,2019,38(3):301−306.
[3] 陈发虎,傅伯杰,夏军,等. 近70年来中国自然地理与生存环境基础研究的重要进展与展望[J]. 中国科学(地球科学),2019,49(11):1659−1696.
CHEN Fahu,FU Bojie,XIA Jun,et al. Major advances in studies of the physical geography and living environment of China during the past 70 years and future prospects[J]. Scientia Sinica (Terrae),2019,49(11):1659−1696.
[4] 袁道先. 岩溶作用对环境变化的敏感性及其记录[J]. 科学通报,1995,40(13):1210−1213.
YUAN Daoxian. Sensitivity of karst to environmental change and its record[J]. Chinese Science Bulletin,1995,40(13):1210−1213.
[5] 袁道先. 地质作用与碳循环研究的回顾和展望[J]. 科学通报,2011,56(26):2157.
YUAN Daoxian. Review and prospect of geological process and carbon cycle research[J]. Chinese Science Bulletin,2011,56(26):2157.
[6] 刘文,徐聪聪,于令芹,等. 不同地质背景下北方岩溶作用强度研究[J]. 中国岩溶,2023,42(5):887−897.
LIU Wen,XU Congcong,YU Lingqin,et al. Study on the intensity of boreal karstification under different geological conditions:A case study at the recharge area of Baotu Spring drainage area,Jinan,Northern China[J]. Carsologica Sinica,2023,42(5):887−897.
[7] 郭红玉. 太原西山岩溶陷落柱发育时间研究[D]. 太原:太原理工大学,2004.
GUO Hongyu. Study on the development time of Karst collapse column in Xishan,Taiyuan[D]. Taiyuan:Taiyuan University of Technology,2004.
[8] 赵金贵,郭敏泰. 太原东山大窑头煤系层间构造与岩溶陷落柱群发育模式[J]. 煤炭学报,2013,38(11):1999−2006.
ZHAO Jingui,GUO Mintai. The interlayer structures and the karst collapse pillars style of the coal measure strata in Dayaotou village,Eastern Mountain,Taiyuan[J]. Journal of China Coal Society,2013,38(11):1999−2006.
[9] 赵金贵,郭敏泰. 平顺老马岭岩溶陷落柱的发现及形成时段探讨[J]. 煤炭学报,2014,39(8):1716−1724.
ZHAO Jingui,GUO Mintai. Discover and formation time of karst collapse pillar in Laomaling,Pingshun County[J]. Journal of China Coal Society,2014,39(8):1716−1724.
[10] 钱学溥. 石膏喀斯特陷落柱的形成及其水文地质意义[J]. 中国岩溶,1988(04):344−348.
Qian Xuepu. Formation of gypsum Kras collapse pillar and its hydrogeological significance[J]. China Karst,1988(04):344−348.
[11] WEI Chongtao,YUE Jianghua,LI Zhuangfu,et al. Comprehensive study on a collapse column in Kongzhuang coal mine[J]. Procedia Earth and Planetary Science,2009,1(1):895−902.
[12] 赵金贵. 西山煤田岩溶陷落柱形态学特征及构造水文演化[D]. 太原:太原理工大学,2004.
ZHAO Jingui. Morphological characteristics and tectonic hydrological evolution of karst collapse column in Xishan Coalfield[D]. Taiyuan:Taiyuan University of Technology,2004.
[13] 宁建宏,张广忠. 陷落柱的地震识别技术及其应用[J]. 煤田地质与勘探,2005,33(3):64−67.
NING Jianhong,ZHANG Guangzhong. Seismic identification technique and its application of collapse column[J]. Coal Geology & Exploration,2005,33(3):64−67.
[14] 尹尚先,连会青,刘德民,等. 华北型煤田岩溶陷落柱研究70年:成因·机理·防治[J]. 煤炭科学技术,2019,47(11):1−29.
YIN Shangxian,LIAN Huiqing,LIU Demin,et al. 70 years of investigation on Karst collapse column in North China Coalfield:Cause of origin,mechanism and prevention[J]. Coal Science and Technology,2019,47(11):1−29.
[15] 赵永清. 北徐楼煤矿陷落柱充水、导水性分析及防治[D]. 青岛:山东科技大学,2006.
ZHAO Yongqing. Analysis and prevention of water filling and hydraulic conductivity of collapse column in Beixulou coal mine[D]. Qingdao:Shandong University of Science and Technology,2006.
[16] 李骏. 阳泉新景煤矿构造叠加改造特征及其对煤体变形的控制[D]. 徐州:中国矿业大学,2017.
LI Jun. Characteristics of structural superposition transformation in Xinjing coal mine of Yangquan and its control on coal deformation[D]. Xuzhou:China University of Mining and Technology,2017.
[17] 朱学稳,黄保健,朱德浩,等. 广西乐业大石围天坑群发现 探测 定义与研究[M]. 南宁:广西科学技术出版社,2003.
[18] 赵金贵,岳科杉,李彦荣,等. 韩咀煤矿32101工作面采动地裂缝走向与黄土地貌关系探讨[J]. 煤炭学报,2021,46(增刊2):898−906.
ZHAO Jingui,YUE Keshan,LI Yanrong,et al. Discussion on the relationship between mining-induced ground fractures strike and loess landform at 32101 face of Hanzui coal mine[J]. Journal of China Coal Society,2021,46(Sup.2):898−906.
[19] AO Hong,DUPONT-NIVET G,ROHLING E J,et al. Orbital climate variability on the northeastern Tibetan Plateau across the Eocene–Oligocene transition[J]. Nature Communications,2020(11):5249.
[20] SZCZYGIEŁ J,GOLICZ M,HERCMAN H,et al. Geological constraints on cave development in the plateau-gorge Karst of South China (Wulong,Chongqing)[J]. Geomorphology,2018,304:50−63.
[21] GABROVŠEK F,STEPIŠNIK U. On the formation of collapse dolines:A modelling perspective[J]. Geomorphology,2011,134(1/2):23−31.
[22] 赵俊峰,刘池洋,MOUNTNEY N,等. 吕梁山隆升时限与演化过程研究[J]. 中国科学(地球科学),2015,45(10):1427−1438.
ZHAO Junfeng,LIU Chiyang,MOUNTNEY N,et al. Timing of uplift and evolution of the Lüliang Mountains,North China Craton[J]. Scientia Sinica (Terrae),2015,45(10):1427−1438.
[23] 徐杰,高战武,宋长青,等. 太行山山前断裂带的构造特征[J]. 地震地质,2000,22(2):111−122.
XU Jie,GAO Zhanwu,SONG Changqing,et al. The structural characters of the piedmont fault zone of Taihang mountain[J]. Seismology and Geology,2000,22(2):111−122.
[24] 李建星,刘池洋,岳乐平,等. 吕梁山新生代隆升的裂变径迹证据及其隆升机制探讨[J]. 中国地质,2015,42(4):960−972.
LI Jianxing,LIU Chiyang,YUE Leping,et al. Apatite fission track evidence for the Cenozoic uplift of the Liiliang Mountains and a discussion on the uplift mechanism[J]. Geology in China,2015,42(4):960−972.
[25] 王乃樑. 山西地堑系新生代沉积与构造地貌[M]. 北京:科学出版社,1996.
[26] 卢耀如. 岩溶水文地质环境演化与工程效应研究[M]. 北京:科学出版社,1999.
[27] 钱学溥. 太行期岩溶剥蚀面的发现及地文期的划分[J]. 中国岩溶,1984(2):27−33.
Qian Xuepu. The discovery of karst denudation surface of the Taihang stage and the division of physiographic stages[J]. Carsologica Sinica,1984(2):27−33.
[28] 任收麦,黄宝春. 晚古生代以来古亚洲洋构造域主要块体运动学特征初探[J]. 地球物理学进展,2002,17(1):113−120.
REN Shoumai,HUANG Baochun. Preliminary study on post-late Paleozoic kinematics of the main blocks of the paleo-Asian ocean[J]. Progress in Geophysics,2002,17(1):113−120.
[29] ZACHOS J,PAGANI M,SLOAN L,et al. Trends,rhythms,and aberrations in global climate 65 Ma to present[J]. Science,2001,292(5517):686−693.
[30] DECONTO R M,POLLARD D,WILSON P A,et al. Thresholds for Cenozoic bipolar glaciation[J]. Nature,2008,455(7213):652−656.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons