Coal Geology & Exploration
Abstract
Objective China is a major producer and consumer of coal resources in the world. The urgent need for the transition of the coal industry necessitates the investigation of both the origin and distribution patterns of geothermal resources in the coal-bearing areas of the country. The coal-bearing area in North China, with geothermal reserves accounting for 74.7% of the whole country, stands out as one of the areas with the most abundant geothermal resources nationally. This area encompasses four major coal-bearing basins: the Bohai Bay, Ordos, Qinshui, and Southern North China, with the lithospheric thermal state gradually weakening from east to west. Two types of geothermal reservoirs are found in the area, namely Cenozoic porous sandstone reservoirs and Cambrian-Ordovician karst-fissured carbonate reservoirs, with the latter proving preferred for the exploration, exploitation, and utilization of geothermal resources in coal fields due to its high temperatures, high water volume, and ease of reinjection. Methods Based on the geothermal geological characteristics of coal fields in China, this study conducted a dynamic analysis of geothermal systems and, accordingly, selected the optimal targets for geothermal exploration and exploitation. Results and Conclusions Four heat accumulation patterns are identified in the coal fields: (1) heat conduction by reservoir-cap rock assemblages consisting of carbonate reservoirs and coal seams as cap rocks. (2) heat conduction under the influence of bedrock surface undulations. (3) heat convection induced by groundwater motion in fault zones. (4) heat convection due to the weathered crust karstification of carbonate bedrock surfaces and the karstification of the contact surface of intrusions. The analysis of these heat accumulation patterns through numerical simulations of examples reveals that the optimal exploration and exploitation targets in the coal-bearing area in North China are identified as geothermal resources in deep carbonate reservoirs. Geothermal energy, featuring considerable reserves, cleanliness, and continuous supply as a type of non-carbon-based energy, will contribute significantly to the heat supply in the energy demands for electricity, fuel, and heat. The geothermal and coal resources in China overlap spatially, establishing the exploitation and utilization of geothermal resources as an effective way to the transition of the coal industry.
Keywords
coal-bearing area, geothermal resource, heat accumulation pattern, exploitation and utilization, North China
DOI
10.12363/issn.1001-1986.24.03.0159
Recommended Citation
P D.
(2024)
"Accumulation patterns and exploitation and utilization targets of geothermal resources in the coal-bearing area in North China,"
Coal Geology & Exploration: Vol. 52:
Iss.
9, Article 3.
DOI: 10.12363/issn.1001-1986.24.03.0159
Available at:
https://cge.researchcommons.org/journal/vol52/iss9/3
Reference
[1] 桑树勋,袁亮,刘世奇,等. 碳中和地质技术及其煤炭低碳化应用前瞻[J]. 煤炭学报,2022,47(4):1430−1451.
SANG Shuxun,YUAN Liang,LIU Shiqi,et al. Geological technology for carbon neutrality and its application prospect for low carbon coal exploitation and utilization[J]. Journal of China Coal Society,2022,47(4):1430−1451.
[2] 邹才能,赵群,张国生,等. 能源革命:从化石能源到新能源[J]. 天然气工业,2016,36(1):1−10.
ZOU Caineng,ZHAO Qun,ZHANG Guosheng,et al. Energy revolution:From a fossil energy era to a new energy era[J]. Natural Gas Industry,2016,36(1):1−10.
[3] 戴厚良,苏义脑,刘吉臻,等. 碳中和目标下我国能源发展战略思考[J]. 北京石油管理干部学院学报,2022,29(2):12−19.
DAI Houliang,SU Yinao,LIU Jizhen,et al. Thinking of China’s energy development strategy under carbon neutrality goal[J]. Journal of Beijing Petroleum Managers Training Institute,2022,29(2):12−19.
[4] 谢和平,任世华,谢亚辰,等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报,2021,46(7):2197−2211.
XIE Heping,REN Shihua,XIE Yachen,et al. Development opportunities of the coal industry towards the goal of carbon neutrality[J]. Journal of China Coal Society,2021,46(7):2197−2211.
[5] 汪集暘,庞忠和,程远志,等. 全球地热能的开发利用现状与展望[J]. 科技导报,2023,41(12):5−11.
WANG Jiyang,PANG Zhonghe,CHENG Yuanzhi,et al. Current state,utilization and prospective of global geothermal energy[J]. Science & Technology Review,2023,41(12):5−11.
[6] IEA. World Energy Outlook 2023[R]. Paris:IEA,2023.
[7] MIT. Technology Review. 10 Breakthrough Technologies 2024[R]. Boston:MIT,2024.
[8] 宋洪柱. 中国煤炭资源分布特征与勘查开发前景研究[D]. 北京:中国地质大学(北京),2013.
SONG Hongzhu. Study on the distribution characteristics and the exploration and development prospect of coal resource of China[D]. Beijing:China University of Geosciences (Beijing),2013.
[9] 王海宁. 中国煤炭资源分布特征及其基础性作用新思考[J]. 中国煤炭地质,2018,30(7):5−9.
WANG Haining. New perspectives on coal resources distribution pattern and its fundamental function in China[J]. Coal Geology of China,2018,30(7):5−9.
[10] 张发旺,赵淼,李胜涛,等. 废弃煤矿山地热资源开发利用研究[J/OL]. 中国地质,2024:1–14[2024-02-19]. http://kns.cnki.net/kcms/detail/11.1167.P.20231127.1037.004.html.
ZHANG Fawang,ZHAO Miao,LI Shengtao,et al. Research on the development and utilization of geothermal resources in abandoned coal mines[J/OL]. Geology in China,2024:1–14[2024-02-19]. http://kns.cnki.net/kcms/detail/11.1167.P.20231127.1037.004.html.
[11] 王贵玲,张薇,梁继运,等. 中国地热资源潜力评价[J]. 地球学报,2017,38(4):449−459.
WANG Guiling,ZHANG Wei,LIANG Jiyun,et al. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica,2017,38(4):449−459.
[12] 姜光政,王亚奇,胡杰,等. 中国中–高温地热资源勘探方向与优选靶区[J]. 科技导报,2022,40(20):76−82.
JIANG Guangzheng,WANG Yaqi,HU Jie,et al. Medium-high temperature geothermal resources in China:Exploration directions and optimizing prospecting targets[J]. Science & Technology Review,2022,40(20):76−82.
[13] 汪集暘,孔彦龙,段忠丰,等. “双碳” 目标下煤田区地热资源开发利用与储能技术[J]. 煤田地质与勘探,2023,51(2):1−11.
WANG Jiyang,KONG Yanlong,DUAN Zhongfeng,et al. Geothermal energy exploitation and storage in coal field under the dual carbon goal[J]. Coal Geology & Exploration,2023,51(2):1−11.
[14] 国家统计局能源统计司. 中国能源统计年鉴[R]. 北京:国家统计局能源统计司,2023.
[15] 侯正猛,吴旭宁,罗佳顺,等. 深部地热能系统主要挑战与耦合储能的增强型创新开发模式[J]. 煤田地质与勘探,2024,52(1):1−13.
HOU Zhengmeng,WU Xuning,LUO Jiashun,et al. Major challenges of deep geothermal systems and an innovative development mode of REGS integrated with energy storage[J]. Coal Geology & Exploration,2024,52(1):1−13.
[16] 庞忠和. 新书介绍:《碳中和:逻辑体系与技术需求》[J]. 地质论评,2023,69(1):410.
PANG Zhonghe. Introduction to the new book:“Carbon neutrality” authored by DING Zhongli et al.[J]. Geological Review,2023,69(1):410.
[17] 庞忠和,黄少鹏,胡圣标,等. 中国地热研究的进展与展望(1995—2014)[J]. 地质科学,2014,49(3):719−727.
PANG Zhonghe,HUANG Shaopeng,HU Shengbiao,et al. Geothermal studies in China:Progress and prospects 1995—2014[J]. Chinese Journal of Geology (Scientia Geologica Sinica),2014,49(3):719−727.
[18] 蒋向明. “双碳” 背景下煤炭行业与地热产业双重发展机遇[J]. 中国煤炭地质,2022,34(增刊1):1−6.
JIANG Xiangming. Double development opportunities for coal industry and geothermal industry under carbon peaking and carbon neutrality background[J]. Coal Geology of China,2022,34(Sup.1):1−6.
[19] 张吉雄,汪集暘,周楠,等. 深部矿山地热与煤炭资源协同开发技术体系研究[J]. 工程科学学报,2022,44(10):1682−1693.
ZHANG Jixiong,WANG Jiyang,ZHOU Nan,et al. Collaborative mining system of geothermal energy and coal resources in deep mines[J]. Chinese Journal of Engineering,2022,44(10):1682−1693.
[20] JIANG Guangzheng,HU Shengbiao,SHI Yizuo,et al. Terrestrial heat flow of continental China:Updated dataset and tectonic implications[J]. Tectonophysics,2019,753:36−48.
[21] 饶松,肖红平,王朱亭,等. 渤海湾盆地馆陶组热储特征与地热资源评价[J]. 天然气工业,2023,43(5):141−152.
RAO Song,XIAO Hongping,WANG Zhuting,et al. Geothermal reservoir characteristics and geothermal resource evaluation of Guantao Formation in the Bohai Bay Basin[J]. Natural Gas Industry,2023,43(5):141−152.
[22] QIU Nansheng,CHANG Jian,ZHU Chuanqing,et al. Thermal regime of sedimentary basins in the Tarim,Upper Yangtze and North China Cratons,China[J]. Earth-Science Reviews,2022,224:103884.
[23] 龚育龄,王良书,刘绍文,等. 济阳坳陷地温场分布特征[J]. 地球物理学报,2003,46(5):652−658.
GONG Yuling,WANG Liangshu,LIU Shaowen,et al. Distribution characteristics of geotemperature field in Jiyang depression,Shandong,North China[J]. Chinese Journal of Geophysics,2003,46(5):652−658.
[24] 张以明,常健,刘念,等. 冀中坳陷霸县地区现今温压场及其与地热资源的关系[J]. 天然气工业,2017,37(10):118−126.
ZHANG Yiming,CHANG Jian,LIU Nian,et al. Present-day temperature–pressure field and its implications for the geothermal resources development in the Baxian area,Jizhong Depression of the Bohai Bay Basin[J]. Natural Gas Industry,2017,37(10):118−126.
[25] 段和肖,刘彦广,王贵玲,等. 沧县隆起中部大地热流及岩石圈热结构特征:以献县地热田为例[J]. 地球科学,2023,48(3):988−1001.
DUAN Hexiao,LIU Yanguang,WANG Guiling,et al. Characteristics of the terrestrial heat flow and lithospheric thermal structure in central Cangxian uplift:A case study of Xianxian geothermal field[J]. Earth Science,2023,48(3):988−1001.
[26] 刘润川. 华北克拉通中部沁水盆地中–新生代热体制与岩石圈减薄研究[D]. 西安:西北大学,2020.
LIU Runchuan. Meso-Cenozoic thermal regime and lithospheric thinning in the Qin Shui Basin,CNCC[D]. Xi’an:Northwest University,2020.
[27] 祁凯. 鄂尔多斯盆地中–新生代热体制及岩石圈动力演化初探[D]. 西安:西北大学,2018.
QI Kai. A preliminary study of Meso-Cenozoic thermal regime and lithospheric dynamic evolution in the Ordos Basin,WNCC[D]. Xi’an:Northwest University,2018.
[28] 任战利,于强,崔军平,等. 鄂尔多斯盆地热演化史及其对油气的控制作用[J]. 地学前缘,2017,24(3):137−148.
REN Zhanli,YU Qiang,CUI Junping,et al. Thermal history and its controls on oil and gas of the Ordos Basin[J]. Earth Science Frontiers,2017,24(3):137−148.
[29] 张鹏,王良书,刘绍文,等. 南华北盆地群地温场研究[J]. 地球物理学进展,2007,22(2):604−608.
ZHANG Peng,WANG Liangshu,LIU Shaowen,et al. Geothermal field in the South Huabei Basins[J]. Progress in Geophysics,2007,22(2):604−608.
[30] 陈凌,危自根,程骋. 从华北克拉通中、西部结构的区域差异性探讨克拉通破坏[J]. 地学前缘,2010,17(1):212−228.
CHEN Ling,WEI Zigen,CHENG Cheng. Significant structural variations in the central and western North China Craton and its implications for the craton destruction[J]. Earth Science Frontiers,2010,17(1):212−228.
[31] HU Shengbiao,O’SULLIVAN P B,RAZA A,et al. Thermal history and tectonic subsidence of the Bohai Basin,northern China:A Cenozoic rifted and local pull-apart basin[J]. Physics of the Earth and Planetary Interiors,2001,126(3/4):221−235.
[32] HE Lijuan. Thermal regime of the North China Craton:Implications for craton destruction[J]. Earth-Science Reviews,2015,140:14−26.
[33] 张健,方桂,何雨蓓. 中国东部地热异常区深层高温分布特征与动力学背景[J]. 地学前缘,2023,30(2):316−332.
ZHANG Jian,FANG Gui,HE Yubei. High-temperature characteristics and geodynamic background at depth of geothermal anomaly areas in eastern China[J]. Earth Science Frontiers,2023,30(2):316−332.
[34] 张薇,王贵玲,刘峰,等. 中国沉积盆地型地热资源特征[J]. 中国地质,2019,46(2):255−268.
ZHANG Wei,WANG Guiling,LIU Feng,et al. Characteristics of geothermal resources in sedimentary basins[J]. Geology in China,2019,46(2):255−268.
[35] 王贵玲,蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报,2020,94(7):1923−1937.
WANG Guiling,LIN Wenjing. Main hydro-geothermal systems and their genetic models in China[J]. Acta Geologica Sinica,2020,94(7):1923−1937.
[36] 张德忠,刘志刚,卢红柳. 河北地热[M]. 北京:地质出版社,2013.
ZHANG Dezhong,LIU Zhigang,LU Hongliu. Geothermics in Hebei[M]. Beijing:Geology Press,2013.
[37] 赵铭海,李晓燕,宋明水,等. 济阳坳陷东营组–馆陶组地热资源评价[J]. 油气地质与采收率,2015,22(4):1−5.
ZHAO Minghai,LI Xiaoyan,SONG Mingshui,et al. Research on geothermal resources assessment of the Guantao-Dongying Formation in Jiyang Depression[J]. Petroleum Geology and Recovery Efficiency,2015,22(4):1−5.
[38] 范翼帆,段忠丰,杨永红,等. 热储特征对砂岩热储采灌井距的影响:以济阳坳陷为例[J]. 水文地质工程地质,2024,51(1):215−223.
FAN Yifan,DUAN Zhongfeng,YANG Yonghong,et al. Impact of reservoir characteristics on the well spacing of sandstone geothermal reservoir:A case study of Jiyang Depression[J]. Hydrogeology & Engineering Geology,2024,51(1):215−223.
[39] 殷肖肖,赵苏民,蔡芸,等. 近三十年天津市地热大规模开发热储动态特征研究[J]. 地质学报,2024,98(1):297−313.
YIN Xiaoxiao,ZHAO Sumin,CAI Yun,et al. Dynamics of geothermal reservoirs for intensive geothermal development in Tianjin from 1992 to 2021[J]. Acta Geologica Sinica,2024,98(1):297−313.
[40] 张杰,陈陆望,侯晓伟,等. 华北型煤田奥陶系岩溶水水文地球化学特征及其对地热的指示意义[J]. 煤炭学报,2023,48(10):3831−3844.
ZHANG Jie,CHEN Luwang,HOU Xiaowei,et al. Hydrogeochemical characteristics of Ordovician karst water in North China coalfield and its indicative significance for geothermal energy[J]. Journal of China Coal Society,2023,48(10):3831−3844.
[41] 林黎. 天津地区雾迷山组热储地下热水资源可持续开发利用研究[D]. 北京:中国地质大学(北京),2006.
LIN Li. Sustainable development and utilization of thermal groundwater resources in the geothermal reservoir of the wumishan group in Tianjin[D]. Beijing:China University of Geosciences (Beijing),2006.
[42] 王贵玲,刘志明,蔺文静. 鄂尔多斯周缘地质构造对地热资源形成的控制作用[J]. 地质学报,2004,78(1):44−51.
WANG Guiling,LIU Zhiming,LIN Wenjing. Tectonic control of geothermal resources in the peripheral of Ordos Basin[J]. Acta Geologica Sinica,2004,78(1):44−51.
[43] 霍改兰,屈永清,马少华,等. 鄂尔多斯盆地地热资源形成条件研究[J]. 西部资源,2011(5):67−69.
HUO Gailan,QU Yongqing,MA Shaohua,et al. Study on formation conditions of geothermal resources in Ordos Basin[J]. Resources,2011(5):67−69.
[44] 刘润川,任战利,叶汉青,等. 地热资源潜力评价:以鄂尔多斯盆地部分地级市和重点层位为例[J]. 地质通报,2021,40(4):565−576.
LIU Runchuan,REN Zhanli,YE Hanqing,et al. Potential evaluation of geothermal resources:Exemplifying some municipalities and key strata in Ordos Basin as a study case[J]. Geological Bulletin of China,2021,40(4):565−576.
[45] 段忠丰,庞忠和,杨峰田. 华北地区煤系地层岩石热导率特征及对热害的影响[J]. 煤炭科学技术,2013,41(8):15−17.
DUAN Zhongfeng,PANG Zhonghe,YANG Fengtian. Features of coal-bearing strata rock thermal conductivity and influence on heat hazard in North China[J]. Coal Science and Technology,2013,41(8):15−17.
[46] 唐博宁,邱楠生,朱传庆,等. 松辽盆地岩石热导率柱及古地温场分布特征[J]. 煤田地质与勘探,2024,52(1):26−35.
TANG Boning,QIU Nansheng,ZHU Chuanqing,et al. Thermal conductivity column of rocks and distribution characteristics of paleo-geothermal field in the Songliao Basin[J]. Coal Geology & Exploration,2024,52(1):26−35.
[47] 王林涛. 许疃煤矿地温分布特征与控制模式研究[D]. 淮南:安徽理工大学,2021.
WANG Lintao. Study on distribution characteristics and control mode of ground temperature in Xutuan Coal Mine[D]. Huainan:Anhui University of Science & Technology,2021.
[48] 庞忠和,孙占学,段忠丰. 矿山地热[M]//汪集暘等,地热学及其应用. 北京:科学出版社,2015:473–515.
PANG Zhonghe,SUN Zhanxue,DUAN Zhongfeng. Geothermic in mine[M]// WANG Jiyang et al. Geothermics and its applications. Beijing:Sciences Press,2015:473-515.
[49] 熊亮平,张菊明. 热流的折射和再分配的数学模拟[J]. 地质科学,1984,19(4):445−454.
XIONG Liangping,ZHANG Juming. Mathematical simulation of refract and redistribution of heat flow[J]. Acta Geologica Sinica,1984,19(4):445−454.
[50] 胡绍龙. 刘庄井田地温分布规律及其因素分析[J]. 矿业安全与环保,2004,31(5):26−28.
HU Shaolong. Distribution pattern of ground temperature in Liuzhuang mine field and analysis on its inducing factors[J]. Mining Safety & Environmental Protection,2004,31(5):26−28.
[51] 庞忠和. 地下水运动对地温场的影响:研究进展综述[J]. 水文地质工程地质,1987,14(3):30−34.
PANG Zhonghe. Influence on geotemperature field of groundwater movement:A review[J]. Hydrogeology and Engineering Geology,1987,14(3):30−34.
[52] 李延河,万志军,于振子,等. 平顶山矿区地热地质条件及其成因分析[J]. 地球物理学进展,2023,38(2):551−561.
LI Yanhe,WAN Zhijun,YU Zhenzi,et al. Analysis of geothermal geological conditions and its genesis in Pingdingshan mining area[J]. Progress in Geophysics,2023,38(2):551−561.
[53] 张霖洲. 平顶山八矿异常地热特征及其地质控制因素[D]. 徐州:中国矿业大学,2021.
ZHANG Linzhou. Abnormal geothermal characteristics and geological control factors of Pingdingshan No.8 Mine[D]. Xuzhou:China University of Mining and Technology,2021.
[54] 庞忠和,孔彦龙,庞菊梅,等. 雄安新区地热资源与开发利用研究[J]. 中国科学院院刊,2017,32(11):1224−1230.
PANG Zhonghe,KONG Yanlong,PANG Jumei,et al. Geothermal resources and development in Xiongan new area[J]. Bulletin of Chinese Academy of Sciences,2017,32(11):1224−1230.
[55] 朱绍军,孟召平,刘亮亮,等. 新郑矿区钻孔地温特征及其受控机制[J]. 煤田地质与勘探,2008,36(2):47−51.
ZHU Shaojun,MENG Zhaoping,LIU Liangliang,et al. Drilling temperature distribution in Xinzheng mining area and its controlling mechanism[J]. Coal Geology & Exploration,2008,36(2):47−51.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons