•  
  •  
 

Coal Geology & Exploration

Authors

WANG Shuangming, Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an University of Science and Technology, Xi’an 710054, China; College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; Geological Research Institute for Coal Green Mining, Xi’an University of Science and Technology, Xi’an 710054, ChinaFollow
SUN Qiang, Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an University of Science and Technology, Xi’an 710054, China; College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; Geological Research Institute for Coal Green Mining, Xi’an University of Science and Technology, Xi’an 710054, China
GENG Jishi, Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an University of Science and Technology, Xi’an 710054, China; College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; Geological Research Institute for Coal Green Mining, Xi’an University of Science and Technology, Xi’an 710054, China
YUAN Shihao, Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an University of Science and Technology, Xi’an 710054, China; College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; Geological Research Institute for Coal Green Mining, Xi’an University of Science and Technology, Xi’an 710054, ChinaFollow
GU Chao, Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an University of Science and Technology, Xi’an 710054, China; College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; Geological Research Institute for Coal Green Mining, Xi’an University of Science and Technology, Xi’an 710054, China
YANG Duoxing, National Institute of Natural Hazards, Ministry of Emergency Management of the People’s Republic of China, Beijing 100085, China
NIU Chao, Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an University of Science and Technology, Xi’an 710054, China; College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; Geological Research Institute for Coal Green Mining, Xi’an University of Science and Technology, Xi’an 710054, China
LU Tuo, Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an University of Science and Technology, Xi’an 710054, China; College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; Geological Research Institute for Coal Green Mining, Xi’an University of Science and Technology, Xi’an 710054, China
GUO Chen, Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an University of Science and Technology, Xi’an 710054, China; College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; Geological Research Institute for Coal Green Mining, Xi’an University of Science and Technology, Xi’an 710054, China
ZHANG Huanlan, Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an University of Science and Technology, Xi’an 710054, China; College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; Geological Research Institute for Coal Green Mining, Xi’an University of Science and Technology, Xi’an 710054, China
HUANG Haiyu, China Coal Energy Research Institute Co., Ltd., Xi’an 710054, China
SHI Qingmin, Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an University of Science and Technology, Xi’an 710054, China; College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; Geological Research Institute for Coal Green Mining, Xi’an University of Science and Technology, Xi’an 710054, China

Abstract

Objective Coals, as the main energy in China for the long term, secure the basic needs for energy development in China. However, large-scale, intense coal mining damages the geologic environment of coal mining areas, as well as inducing hazards such as water inrushes and rock bursts. Methods To overcome the challenges in geological security through the prediction and early warning of damage to geologic environments and damage-reducing mining faced by safe, efficient coal mining, this study, based on the interdisciplinary characteristics of the geological security, highlighted the hazard control mechanisms and mining-inducing hazard patterns of geological conditions, underscored the whole-space-time multi-field responses of coal mining modes and geological structural evolution, analyzed the coupling mechanism of the material field, energy field, and information field of geological conditions under the mining effect, ascertained the mapping relationship between the damage pattern and the key parameters of early-warning information, and developed safe and efficient geological security strategies and an engineering technical system for damage reduction and hazard control. Results and Conclusions The research philosophy involves hazard-inducing environments, damage mechanisms, process response, damage prediction, and hazard prevention and damage reduction sequentially. The technical route comprises geologic environmental conditions of coal mining; the evolution laws and damage patterns of geological structures; whole-space-time information responses of multi-physical field evolution; damage monitoring, prediction, and warning; and damage-reducing security engineering technologies. Core contents are as follows: (1) Analyzing the spatial and genetic relationships between geological conditions and typical hazard-inducing geological bodies, constructing high-precision three-dimensional geomechanical models, ascertaining the mapping relationship between geological structures, mining conditions, and damage patterns, and establishing a database of characteristic parameters for major control elements. (2) Constructing an engineering geomechanical model under the mining effect, investigating the spatiotemporal evolutionary characteristics and damage mechanisms of geological conditions and structures under the influence of the methods, spatial layout, and mining rate of coal mining, and proposing methods for damage pattern identification that consider the evolutionary laws of critical structural failures of geological bodies. (3) Obtaining the whole-space-time multi-source information responses in the context of geological structural evolution during coal mining, proposing the criteria for damage pattern identification under the action of major control parameters, further clarifying the mirror-image relationships of the fissure field, stress field, and seepage field with the information parameters of geophysical fields, and establishing a whole-space-time information mapping model based on the coupling responses of the material field, energy field, and information field of geological conditions. (4) Building a whole-space multifaceted, active and passive integrated multi-source monitoring system involving the ground, boreholes, and underground space and proposing a prediction model and prediction methods for mining-induced hazards in coal mines. (5) Developing a damage-reducing and hazard control system that integrates the analyses of damage sources, patterns, dynamics, and channels, as well as damage-reducing technologies and their performance evaluation. The purpose of this study is to pursue the coordinated development of safe coal mining and geologic environment protection, resolve the conflict between resource development and geologic environmental constraints, and provide a scientific basis for safe and efficient coal mining, hazard prevention, and damage reduction based on geology, mechanics, and physics.

Keywords

geological support, geological hazard, damage-reducing mining, multi-field information response, damage pattern, damage-reducing and hazard control technology

DOI

10.12363/issn.1001-1986.24.03.0181

Reference

[1] 王佟,邵龙义,夏玉成,等. 中国煤炭地质研究取得的重大进展与今后的主要研究方向[J]. 中国地质,2017,44(2):242−262.

WANG Tong,SHAO Longyi,XIA Yucheng,et al. Major achievements and future research directions of the coal geology in China[J]. Geology in China,2017,44(2):242−262.

[2] 武强,涂坤,曾一凡,等. 打造我国主体能源(煤炭)升级版面临的主要问题与对策探讨[J]. 煤炭学报,2019,44(6):1625−1636.

WU Qiang,TU Kun,ZENG Yifan,et al. Discussion on the main problems and countermeasures for building an upgrade version of main energy (coal) industry in China[J]. Journal of China Coal Society,2019,44(6):1625−1636.

[3] 赵平,谭克龙,韩效忠,等. 新形势下我国能源与生态安全保障研究[J]. 中国煤炭地质,2021,33(1):1−7.

ZHAO Ping,TAN Kelong,HAN Xiaozhong,et al. Research for energy and ecological security in China under new situation[J]. Coal Geology of China,2021,33(1):1−7.

[4] 王国法,任世华,庞义辉,等. 煤炭工业“十三五” 发展成效与“双碳” 目标实施路径[J]. 煤炭科学技术,2021,49(9):1−8.

WANG Guofa,REN Shihua,PANG Yihui,et al. Development achievements of China’s coal industry during the 13th Five-Year Plan period and implementation path of “dual carbon” target[J]. Coal Science and Technology,2021,49(9):1−8.

[5] 谢克昌. 面向2035年我国能源发展的思考与建议[J]. 中国工程科学,2022,24(6):1−7.

XIE Kechang. China’s energy development for 2035:Strategic thinking and suggestions[J]. Strategic Study of CAE,2022,24(6):1−7.

[6] 前瞻产业研究院. 2018—2023年中国煤炭行业发展前景与投资战略规划分析报告[R]. 深圳:前瞻产业研究院,2018.

[7] 中国工程院. 中国能源中长期(2030、2050)发展战略研究:节能,煤炭卷[M]. 北京:科学出版社,2011.

[8] 董书宁,姬亚东,王皓,等. 鄂尔多斯盆地侏罗纪煤田典型顶板水害防控技术与应用[J]. 煤炭学报,2020,45(7):2367−2375.

DONG Shuning,JI Yadong,WANG Hao,et al. Prevention and control technology and application of roof water disaster in Jurassic coal field of Ordos Basin[J]. Journal of China Coal Society,2020,45(7):2367−2375.

[9] 范立民,向茂西,彭捷,等. 西部生态脆弱矿区地下水对高强度采煤的响应[J]. 煤炭学报,2016,41(11):2672−2678.

FAN Limin,XIANG Maoxi,PENG Jie,et al. Groundwater response to intensive mining in ecologically fragile area[J]. Journal of China Coal Society,2016,41(11):2672−2678.

[10] 高学鹏,于凤海,任强,等. 西部鄂尔多斯矿区强矿压显现及顶板运动规律[J]. 金属矿山,2020(6):191−197.

GAO Xuepeng,YU Fenghai,REN Qiang,et al. Strata movement law and strong ground behavior in western Ordos coalfield[J]. Metal Mine,2020(6):191−197.

[11] 杨鑫,徐曾和,杨天鸿,等. 西部典型矿区风积沙含水层突水溃沙的起动条件与运移特征[J]. 岩土力学,2018,39(1):21−28.

YANG Xin,XU Zenghe,YANG Tianhong,et al. Incipience condition and migration characteristics of aeolian-sand aquifer in a typical western mine[J]. Rock and Soil Mechanics,2018,39(1):21−28.

[12] 吕扬,马晓涛,王嗣桐,等. 曹家滩煤矿顶板富水性分析及防治措施研究[J]. 煤炭工程,2022,54(6):75−79.

LYU Yang,MA Xiaotao,WANG Sitong,et al. Roof water-abundance in Caojiatan Coal Mine and the water control measures[J]. Coal Engineering,2022,54(6):75−79.

[13] 潘俊锋,简军峰,刘少虹,等. 黄陇侏罗纪煤田冲击地压地质特征与防治[J]. 煤矿开采,2019,24(1):110−115.

PAN Junfeng,JIAN Junfeng,LIU Shaohong,et al. Geological characteristic and control of rock burst of Huanglong Jurassic coal mine field[J]. Coal Mining Technology,2019,24(1):110−115.

[14] 卞正富,雷少刚. 新疆煤炭资源开发的环境效应与保护策略研究[J]. 煤炭科学技术,2020,48(4):43−51.

BIAN Zhengfu,LEI Shaogang. Green exploitation of coal resources and its environmental effects and protecting strategy in Xinjiang[J]. Coal Science and Technology,2020,48(4):43−51.

[15] 康红普,徐刚,王彪谋,等. 我国煤炭开采与岩层控制技术发展40 a及展望[J]. 采矿与岩层控制工程学报,2019,1(2):7−39.

KANG Hongpu,XU Gang,WANG Biaomou,et al. Forty years development and prospects of underground coal mining and strata control technologies in China[J]. Journal of Mining and Strata Control Engineering,2019,1(2):7−39.

[16] 袁亮,姜耀东,何学秋,等. 煤矿典型动力灾害风险精准判识及监控预警关键技术研究进展[J]. 煤炭学报,2018,43(2):306−318.

YUAN Liang,JIANG Yaodong,HE Xueqiu,et al. Research progress of precise risk accurate identification and monitoring early warning on typical dynamic disasters in coal mine[J]. Journal of China Coal Society,2018,43(2):306−318.

[17] 齐庆新,李一哲,赵善坤,等. 我国煤矿冲击地压发展70年:理论与技术体系的建立与思考[J]. 煤炭科学技术,2019,47(9):1−40.

QI Qingxin,LI Yizhe,ZHAO Shankun,et al. Seventy years development of coal mine rockburst in China:Establishment and consideration of theory and technology system[J]. Coal Science and Technology,2019,47(9):1−40.

[18] 袁亮. 瓦斯治理理念和煤与瓦斯共采技术[J]. 中国煤炭,2010,36(6):5−12.

YUAN Liang. Concept of gas control and simultaneous extraction of coal and gas[J]. China Coal,2010,36(6):5−12.

[19] 谢和平,周宏伟,薛东杰,等. 我国煤与瓦斯共采:理论、技术与工程[J]. 煤炭学报,2014,39(8):1391−1397.

XIE Heping,ZHOU Hongwei,XUE Dongjie,et al. Theory,technology and engineering of simultaneous exploitation of coal and gas in China[J]. Journal of China Coal Society,2014,39(8):1391−1397.

[20] 王双明,孙强,乔军伟,等. 论煤炭绿色开采的地质保障[J]. 煤炭学报,2020,45(1):8−15.

WANG Shuangming,SUN Qiang,QIAO Junwei,et al. Geological guarantee of coal green mining[J]. Journal of China Coal Society,2020,45(1):8−15.

[21] 王双明,耿济世,李鹏飞,等. 煤炭绿色开发地质保障体系的构建[J]. 煤田地质与勘探,2023,51(1):33−43.

WANG Shuangming,GENG Jishi,LI Pengfei,et al. Construction of geological guarantee system for green coal mining[J]. Coal Geology & Exploration,2023,51(1):33−43.

[22] 董书宁,刘再斌,程建远,等. 煤炭智能开采地质保障技术及展望[J]. 煤田地质与勘探,2021,49(1):21−31.

DONG Shuning,LIU Zaibin,CHENG Jianyuan,et al. Technologies and prospect of geological guarantee for intelligent coal mining[J]. Coal Geology & Exploration,2021,49(1):21−31.

[23] 王世斌,侯恩科,王双明,等. 煤炭安全智能开采地质保障系统软件开发与应用[J]. 煤炭科学技术,2022,50(7):13−24.

WANG Shibin,HOU Enke,WANG Shuangming,et al. Development and application of geological guarantee system software for safe and intelligent coal mining[J]. Coal Science and Technology,2022,50(7):13−24.

[24] 张玉军,张志巍. 煤层采动覆岩破坏规律与控制技术研究进展[J]. 煤炭科学技术,2020,48(11):85−97.

ZHANG Yujun,ZHANG Zhiwei. Research progress of mining overlying stratas failure law and control technology[J]. Coal Science and Technology,2020,48(11):85−97.

[25] 郭文兵,赵高博,白二虎. 煤矿高强度长壁开采覆岩破坏充分采动及其判据[J]. 煤炭学报,2020,45(11):3657−3666.

GUO Wenbing,ZHAO Gaobo,BAI Erhu. Critical failure of overlying rock strata and its criteria induced by high-intensity longwall mining[J]. Journal of China Coal Society,2020,45(11):3657−3666.

[26] 张培河,张齐,孙学阳,等. 煤炭开采覆岩移动导水裂隙带发育高度相似材料模拟实验研究[J]. 中国煤炭地质,2019,31(10):49−52.

ZHANG Peihe,ZHANG Qi,SUN Xueyang,et al. Similar material simulation experimental study on overburden movemen caused water conducted zone height in coal mining[J]. Coal Geology of China,2019,31(10):49−52.

[27] 王双明,侯恩科,谢晓深,等. 中深部煤层开采对地表生态环境的影响及修复提升途径研究[J]. 煤炭科学技术,2021,49(1):19−31.

WANG Shuangming,HOU Enke,XIE Xiaoshen,et al. Study on influence of surface ecological environment caused by middle deep coal mining and the ways of restoration[J]. Coal Science and Technology,2021,49(1):19−31.

[28] 973计划(2013CB227900)“西部煤炭高强度开采下地质灾害防治与环境保护基础研究”项目组. 西部煤炭高强度开采下地质灾害防治理论与方法研究进展[J]. 煤炭学报,2017,42(2):267−275.

Research Group of National Key Basic Research Program of China (2013CB227900) (Basic Study on Geological Hazard Prevention and Environmental Protection in High Intensity Mining of Western Coal Area). Theory and method research of geological disaster prevention on high-intensity coal exploitation in the west areas[J]. Journal of China Coal Society,2017,42(2):267−275.

[29] 钱鸣高,许家林,王家臣. 再论煤炭的科学开采[J]. 煤炭学报,2018,43(1):1−13.

QIAN Minggao,XU Jialin,WANG Jiachen. Further on the sustainable mining of coal[J]. Journal of China Coal Society,2018,43(1):1−13.

[30] 钱鸣高,许家林,缪协兴. 煤矿绿色开采技术[J]. 中国矿业大学学报,2003,32(4):343−348.

QIAN Minggao,XU Jialin,MIAO Xiexing. Green technique in coal mining[J]. Journal of China University of Mining & Technology,2003,32(4):343−348.

[31] 王双明,孙强,谷超,等. 煤炭开发推动地学研究发展[J]. 中国煤炭,2024,50(1):2−8.

WANG Shuangming,SUN Qiang,GU Chao,et al. The development of geoscientific research promoted by coal exploitation[J]. China Coal,2024,50(1):2−8.

[32] 王双明,孙强,胡鑫,等. 煤炭原位开发地质保障[J]. 西安科技大学学报,2024,44(1):1−11.

WANG Shuangming,SUN Qiang,HU Xin,et al. Geological guarantee for in situ development of coal[J]. Journal of Xi’an University of Science and Technology,2024,44(1):1−11.

[33] 王双明,刘浪,赵玉娇,等. “双碳” 目标下赋煤区新能源开发:未来煤矿转型升级新路径[J]. 煤炭科学技术,2023,51(1):59–79.

WANG Shuangming,LIU Lang,ZHAO Yujiao,et al. New energy exploitation in coal-endowed areas under the target of “double carbon” :A new path for transformation and upgrading of coal mines in the future[J]. Coal Science and Technology,2023,51(1):59–79.

[34] 王双明,刘浪,朱梦博,等. “双碳”目标下煤炭绿色低碳发展新思路[J]. 煤炭学报,2024,49(1):152−171.

WANG Shuangming,LIU Lang,ZHU Mengbo,et al. New way for green and low-carbon development of coal industry under the target of “double carbon”[J]. Journal of China Coal Society,2024,49(1):152−171.

[35] 袁亮. 煤炭精准开采科学构想[J]. 煤炭学报,2017,42(1):1−7.

YUAN Liang. Scientific conception of precision coal mining[J]. Journal of China Coal Society,2017,42(1):1−7.

[36] 李全生. 蒙东草原区大型露天煤矿减损开采与生态修复关键技术[J]. 采矿与安全工程学报,2023,40(5):905−915.

LI Quansheng. Key technologies for damage reduction mining and ecological restoration of large-scale open pit coal mines in grassland area of eastern Inner Mongolia[J]. Journal of Mining & Safety Engineering,2023,40(5):905−915.

[37] 李全生,郭俊廷,张凯,等. 西部煤炭集约化开采损伤传导机理与源头减损关键技术[J]. 煤炭学报,2021,46(11):3636−3644.

LI Quansheng,GUO Junting,ZHANG Kai,et al. Damage conduction mechanism and key technologies of damage reduction in sources for intensive coal mining in western China[J]. Journal of China Coal Society,2021,46(11):3636−3644.

[38] 武强. 我国矿井水防控与资源化利用的研究进展、问题和展望[J]. 煤炭学报,2014,39(5):795−805.

WU Qiang. Progress,problems and prospects of prevention and control technology of mine water and reutilization in China[J]. Journal of China Coal Society,2014,39(5):795−805.

[39] 武强,许珂,张维. 再论煤层顶板涌(突)水危险性预测评价的“三图–双预测法”[J]. 煤炭学报,2016,41(6):1341−1347.

WU Qiang,XU Ke,ZHANG Wei. Further research on “three maps-two predictions” method for prediction on coal seam roof water bursting risk[J]. Journal of China Coal Society,2016,41(6):1341−1347.

[40] 武强,涂坤. 我国发展面临能源与环境的双重约束分析及对策思考[J]. 科学通报,2019,64(15):1535−1544.

WU Qiang,TU Kun. Analysis on the dual constraints of energy and environment to the development of China and countermeasures[J]. Chinese Science Bulletin,2019,64(15):1535−1544.

[41] 彭苏萍,毕银丽. 黄河流域煤矿区生态环境修复关键技术与战略思考[J]. 煤炭学报,2020,45(4):1211−1221.

PENG Suping,BI Yinli. Strategic consideration and core technology about environmental ecological restoration in coal mine areas in the Yellow River Basin of China[J]. Journal of China Coal Society,2020,45(4):1211−1221.

[42] 潘一山,代连朋. 煤矿冲击地压发生理论公式[J]. 煤炭学报,2021,46(3):789−799.

PAN Yishan,DAI Lianpeng. Theoretical formula of rock burst in coal mines[J]. Journal of China Coal Society,2021,46(3):789−799.

[43] 潘一山,肖永惠,罗浩,等. 冲击地压矿井安全性研究[J]. 煤炭学报,2023,48(5):1846−1860.

PAN Yishan,XIAO Yonghui,LUO Hao,et al. Study on safety of rockburst mine[J]. Journal of China Coal Society,2023,48(5):1846−1860.

[44] 谢和平,张茹,邓建辉,等. 基于“深地–地表” 联动的深地科学与地灾防控技术体系初探[J]. 工程科学与技术,2021,53(4):1−12.

XIE Heping,ZHANG Ru,DENG Jianhui,et al. A preliminary study on the technical system of deep earth science and geo disaster prevention-control based on the “deep earth–surface” linkage strategy[J]. Advanced Engineering Sciences,2021,53(4):1−12.

[45] 王恩元,李忠辉,李保林,等. 煤矿瓦斯灾害风险隐患大数据监测预警云平台与应用[J]. 煤炭科学技术,2022,50(1):142−150.

WANG Enyuan,LI Zhonghui,LI Baolin,et al. Big data monitoring and early warning cloud platform for coal mine gas disaster risk and potential danger and its application[J]. Coal Science and Technology,2022,50(1):142−150.

[46] 范立民,孙魁,李成,等. 榆神矿区煤矿防治水的几点思考[J]. 煤田地质与勘探,2021,49(1):182−188.

FAN Limin,SUN Kui,LI Cheng,et al. Thoughts on mine water control and treatment in Yushen mining area[J]. Coal Geology & Exploration,2021,49(1):182−188.

[47] 张春光,李松营,杨培,等. 陕渑煤田构造控水机理[J]. 煤田地质与勘探,2012,40(5):42−46.

ZHANG Chunguang,LI Songying,YANG Pei,et al. Structural control mechanism on groundwater in Shanmian Coalfield[J]. Coal Geology & Exploration,2012,40(5):42−46.

[48] 曹健,黄庆享. 浅埋近距煤层开采覆岩与地表裂缝发育规律及控制[J]. 煤田地质与勘探,2021,49(4):213−220.

CAO Jian,HUANG Qingxiang. Regularity and control of overburden and surface fractures in shallow-contiguous seams[J]. Coal Geology & Exploration,2021,49(4):213−220.

[49] 曹虎生,徐向东,柯贤敏,等. 烧变岩区露天煤矿保水开采效果模拟分析[J]. 煤矿安全,2023,54(4):175−183.

CAO Husheng,XU Xiangdong,KE Xianmin,et al. Simulation and analysis of the effect of water preserved mining in open-pit coal mines in burned rock areas[J]. Safety in Coal Mines,2023,54(4):175−183.

[50] 仵拨云,彭捷,向茂西,等. 榆神府矿区保水采煤受保护萨拉乌苏组含水层研究[J]. 采矿与安全工程学报,2018,35(5):984−990.

WU Boyun,PENG Jie,XIANG Maoxi,et al. Research on Salawusu Formation aquifer protected by water preserving mining in Yushenfu mining area[J]. Journal of Mining & Safety Engineering,2018,35(5):984−990.

[51] 王双明,黄庆享,范立民,等. 生态脆弱矿区含(隔)水层特征及保水开采分区研究[J]. 煤炭学报,2010,35(1):7−14.

WANG Shuangming,HUANG Qingxiang,FAN Limin,et al. Study on overburden aquclude and water protection mining regionazation in the ecological fragile mining area[J]. Journal of China Coal Society,2010,35(1):7−14.

[52] 高利军,高帅,寇规规,等. 神南矿区水质特征及水环境保护研究[J]. 中国煤炭,2024,50(4):138−149.

GAO Lijun,GAO Shuai,KOU Guigui,et al. Study on water quality characteristics and water environment protection in Shennan mining area[J]. China Coal,2024,50(4):138−149.

[53] 张帅,冯国瑞,张东升,等. 榆神矿区导水裂隙带高度多因素影响规律及保水采煤分区[J]. 太原理工大学学报,2023,54(2):301−312.

ZHANG Shuai,FENG Guorui,ZHANG Dongsheng,et al. Multi-factor contribution to the height of water-conducting fracture zone and mine zoning for water protection in Yushen Coalfield[J]. Journal of Taiyuan University of Technology,2023,54(2):301−312.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.