•  
  •  
 

Coal Geology & Exploration

Abstract

Objective The production characteristics of deep coalbed methane (CBM) are significantly distinguished from those of middle-shallow CBM, and even the production wells of deep CBM within the same block exhibit different characteristics. Given that relevant research remains in its exploratory stage, gaining a deeper understanding of the factors influencing the differences in production characteristics of deep CBM is significant for the production capacity prediction and production management of the subsequent large-scale production stage. Methods To determine the production characteristics of deep CBM in the Linxing block and their influencing factors, this study examined geological engineering factors including gas content, coal thickness, burial depth, hydrochemical characteristics, and fracturing technology. Results and Conclusions The results are as follows: (1) Deep CBM wells in the Linxing block can be categorized into three types: flowing wells of supersaturated CBM reservoirs, production wells of supersaturated CBM reservoirs, and production wells of undersaturated CBM reservoirs. (2) Gas-bearing properties are identified as a dominant factor controlling the production characteristics of three types of wells. CBM wells in coal seams with burial depths ranging from 1800 to 2000 m exhibit relatively high gas content and stable gas production. (3) Production wells of undersaturated CBM reservoirs reveal inferior preservation conditions and hydrochemical characteristics that are significantly different from those of the other two types of wells, resulting in relatively poor production performance. Additionally, the fouling and corrosion of strings, caused by high total dissolved solids (TDS) and ${\mathrm{HCO}}_3^- $ concentration, lead to discontinuous production. (4) Large-scale fracturing serves as an effective reservoir stimulation measure to increase the production of gas wells, and the effective propping of proppants for fractures proves critical in guaranteeing high and stable gas production of deep CBM wells. The results of this study present the factors influencing the differences in the production characteristics of deep CBM in the Linxing block, acting as a reference for the production of deep CBM in the Linxing block and its adjacent areas.

Keywords

deep coalbed methane, production characteristics, influence factor, eastern margin of the Ordos Basin, Linxing block

DOI

10.12363/issn.1001-1986.24.03.0214

Reference

[1] 徐凤银,王成旺,熊先钺,等. 深部(层)煤层气成藏模式与关键技术对策:以鄂尔多斯盆地东缘为例[J]. 中国海上油气,2022,34(4):30−42.

XU Fengyin,WANG Chengwang,XIONG Xianyue,et al. Deep (layer) coalbed methane reservoir forming modes and key technical countermeasures:Taking the eastern margin of Ordos Basin as an example[J]. China Offshore Oil and Gas,2022,34(4):30−42.

[2] 周德华,陈刚,陈贞龙,等. 中国深层煤层气勘探开发进展、关键评价参数与前景展望[J]. 天然气工业,2022,42(6):43−51.

ZHOU Dehua,CHEN Gang,CHEN Zhenlong,et al. Exploration and development progress,key evaluation parameters and prospect of deep CBM in China[J]. Natural Gas Industry,2022,42(6):43−51.

[3] 李勇,徐立富,张守仁,等. 深煤层含气系统差异及开发对策[J]. 煤炭学报,2023,48(2):900−917.

LI Yong,XU Lifu,ZHANG Shouren,et al. Gas bearing system difference in deep coal seams and corresponded development strategy[J]. Journal of China Coal Society,2023,48(2):900−917.

[4] 徐凤银,王成旺,熊先钺,等. 鄂尔多斯盆地东缘深部煤层气成藏演化规律与勘探开发实践[J]. 石油学报,2023,44(11):1764−1780.

XU Fengyin,WANG Chengwang,XIONG Xianyue,et al. Evolution law of deep coalbed methane reservoir formation and exploration and development practice in the eastern margin of Ordos Basin[J]. Acta Petrolei Sinica,2023,44(11):1764−1780.

[5] 何发岐,董昭雄. 深部煤层气资源开发潜力:以鄂尔多斯盆地大牛地气田为例[J]. 石油与天然气地质,2022,43(2):277−285.

HE Faqi,DONG Zhaoxiong. Development potential of deep coalbed methane:A case study in the Daniudi gas field,Ordos Basin[J]. Oil & Gas Geology,2022,43(2):277−285.

[6] 杨帆,李斌,王昆剑,等. 深部煤层气水平井大规模极限体积压裂技术:以鄂尔多斯盆地东缘临兴区块为例[J]. 石油勘探与开发,2024,51(2):389−398.

YANG Fan,LI Bin,WANG Kunjian,et al. Extreme massive hydraulic fracturing in deep coalbed methane horizontal wells:A case study of the Linxing block,eastern Ordos Basin,NW China[J]. Petroleum Exploration and Development,2024,51(2):389−398.

[7] 康永尚,皇甫玉慧,张兵,等. 含煤盆地深层“超饱和” 煤层气形成条件[J]. 石油学报,2019,40(12):1426−1438.

KANG Yongshang,HUANGFU Yuhui,ZHANG Bing,et al. Formation conditions for deep oversaturated coalbed methane in coal-bearing basins[J]. Acta Petrolei Sinica,2019,40(12):1426−1438.

[8] 李勇,王延斌,孟尚志,等. 煤系非常规天然气合采地质基础理论进展及展望[J]. 煤炭学报,2020,45(4):1406−1418.

LI Yong,WANG Yanbin,MENG Shangzhi,et al. Theoretical basis and prospect of coal measure unconventional natural gas co-production[J]. Journal of China Coal Society,2020,45(4):1406−1418.

[9] 刘池洋,王建强,张东东,等. 鄂尔多斯盆地油气资源丰富的成因与赋存–成藏特点[J]. 石油与天然气地质,2021,42(5):1011−1029.

LIU Chiyang,WANG Jianqiang,ZHANG Dongdong,et al. Genesis of rich hydrocarbon resources and their occurrence and accumulation characteristics in the Ordos Basin[J]. Oil & Gas Geology,2021,42(5):1011−1029.

[10] XU Lifu,LI Yong,SUN Xiaoguang,et al. Geological controls on gas content in tidal flats-lagoonal and deltaic shales in the northeastern Ordos Basin[J]. Journal of Petroleum Science and Engineering,2023,221:111291.

[11] 孙平,刘洪林,巢海燕,等. 低煤阶煤层气勘探思路[J]. 天然气工业,2008,28(3):19−22.

SUN Ping,LIU Honglin,CHAO Haiyan,et al. Exploration direction of coalbed methane in low-rank coats[J]. Natural Gas Industry,2008,28(3):19−22.

[12] 石军太,曹敬添,徐凤银,等. 深部煤层气游离气饱和度计算模型及其应用[J]. 煤田地质与勘探,2024,52(2):134−146.

SHI Juntai,CAO Jingtian,XU Fengyin,et al. A calculation model of free gas saturation in deep coalbed methane reservoirs and its application[J]. Coal Geology & Exploration,2024,52(2):134−146.

[13] 熊先钺,闫霞,徐凤银,等. 深部煤层气多要素耦合控制机理、解吸规律与开发效果剖析[J]. 石油学报,2023,44(11):1812−1826.

XIONG Xianyue,YAN Xia,XU Fengyin,et al. Analysis of multi-factor coupling control mechanism,desorption law and development effect of deep coalbed methane[J]. Acta Petrolei Sinica,2023,44(11):1812−1826.

[14] 陈明,王大猛,余莉珠,等. 大宁–吉县区块深部煤层气井排采制度研究与实践[J/OL]. 煤炭学报,2024:1–11[2024-06-25]. https://doi.org/10.13225/j.cnki.jccs.2024.0318.

CHEN Ming,WANG Dameng,YU Lizhu,et al. Drainage system research and application of deep coalbed methane gas reservoirs in the Daning-Jixian block[J/OL]. Journal of China Coal Society,2024:1–11[2024-06-25]. https://doi.org/10.13225/j.cnki.jccs.2024.0318.

[15] 赵兴龙,汤达祯,张岩. 延川南煤层气田深部煤层气藏排采制度的建立与优化[J]. 煤炭科学技术,2021,49(6):251−257.

ZHAO Xinglong,TANG Dazhen,ZHANG Yan. Establishment and optimization of drainage system for deep coalbed methane in south Yanchuan CBM Field[J]. Coal Science and Technology,2021,49(6):251−257.

[16] 徐凤银,聂志宏,孙伟,等. 大宁–吉县区块深部煤层气高效开发理论技术体系[J/OL]. 煤炭学报,2023:1–17[2024-06-20]. https://doi.org/10.13225/j.cnki.jccs.YH23.1290.

XU Fengyin,NIE Zhihong,SUN Wei,et al. Theoretical and technological system for highly efficient development of deep coalbed methane in Daning-Jixian Block[J/OL]. Journal of China Coal Society,2023:1–17[2024-06-20]. https://doi.org/10.13225/j.cnki.jccs.YH23.1290.

[17] 李曙光,王成旺,王红娜,等. 大宁–吉县区块深层煤层气成藏特征及有利区评价[J]. 煤田地质与勘探,2022,50(9):59−67.

LI Shuguang,WANG Chengwang,WANG Hongna,et al. Reservoir forming characteristics and favorable area evaluation of deep coalbed methane in Daning-Jixian Block[J]. Coal Geology & Exploration,2022,50(9):59−67.

[18] 陈世达,侯伟,汤达祯,等. 煤储层含气性深度效应与成藏过程耦合关系[J]. 煤田地质与勘探,2024,52(2):52−59.

CHEN Shida,HOU Wei,TANG Dazhen,et al. Effects of depth on gas-bearing properties of coal reservoirs and their coupling relationships with coalbed methane accumulation[J]. Coal Geology & Exploration,2024,52(2):52−59.

[19] 许浩,汤达祯,陶树,等. 深、浅部煤层气地质条件差异性及其形成机制[J]. 煤田地质与勘探,2024,52(2):33−39.

XU Hao,TANG Dazhen,TAO Shu,et al. Differences in geological conditions of deep and shallow coalbed methane and their formation mechanisms[J]. Coal Geology & Exploration,2024,52(2):33−39.

[20] 林海飞,姚飞,李树刚,等. 温度及含水量对煤吸附甲烷特性影响的实验研究[J]. 煤矿开采,2014,19(3):9−12.

LIN Haifei,YAO Fei,LI Shugang,et al. Experiment of coal’s temperature and water content influencing methane absorption quality[J]. Coal Mining Technology,2014,19(3):9−12.

[21] 赵志根,唐修义,张光明. 较高温度下煤吸附甲烷实验及其意义[J]. 煤田地质与勘探,2001,29(4):29−31.

ZHAO Zhigen,TANG Xiuyi,ZHANG Guangming. Experiment and significance of isothermal adsorption of coal on methane under higher temperature[J]. Coal Geology & Exploration,2001,29(4):29−31.

[22] 高丽军,谢英刚,潘新志,等. 临兴深部煤层气含气性及开发地质模式分析[J]. 煤炭学报,2018,43(6):1634−1640.

GAO Lijun,XIE Yinggang,PAN Xinzhi,et al. Gas analysis of deep coalbed methane and its geological model for development in Linxing Block[J]. Journal of China Coal Society,2018,43(6):1634−1640.

[23] 王成旺,刘新伟,李曙光,等. 大宁—吉县区块深部煤层气富集主控因素分析及地质工程甜点区评价[J]. 西安石油大学学报(自然科学版),2024,39(4):1−9.

WANG Chengwang,LIU Xinwei,LI Shuguang,et al. Analysis of main controlling factors of deep coalbed methane enrichment and evaluation of geological and engineering sweet areas in Daning-Jixian Block[J]. Journal of Xi’an Shiyou University (NaturalScience Edition),2024,39(4):1−9.

[24] 刘方槐,颜婉荪. 油气田水文地质学原理[M]. 北京:石油工业出版社,1991.

[25] 杨焦生,冯鹏,唐淑玲,等. 大宁–吉县区块深部煤层气相态控制因素及含量预测模型[J]. 石油学报,2023,44(11):1879−1891.

YANG Jiaosheng,FENG Peng,TANG Shuling,et al. Phase control factors and content prediction model of deep coalbed methane in Daning-Jixian Block[J]. Acta Petrolei Sinica,2023,44(11):1879−1891.

[26] 王勃. 沁水盆地煤层气富集高产规律及有利区块预测评价[D]. 徐州:中国矿业大学,2013.

WANG Bo. Coalbed methane enrichment and high-production rule & prospective area prediction in Qinshui Basin [D]. Xuzhou:China University of Mining and Technology,2013.

[27] 曾雯婷,葛腾泽,王倩,等. 深层煤层气全生命周期一体化排采工艺探索:以大宁–吉县区块为例[J]. 煤田地质与勘探,2022,50(9):78−85.

ZENG Wenting,GE Tengze,WANG Qian,et al. Exploration of integrated technology for deep coalbed methane drainage in full life cycle:A case study of Daning-Jixian Block[J]. Coal Geology & Exploration,2022,50(9):78−85.

[28] 张聪,李梦溪,胡秋嘉,等. 沁水盆地南部中深部煤层气储层特征及开发技术对策[J]. 煤田地质与勘探,2024,52(2):122−133.

ZHANG Cong,LI Mengxi,HU Qiujia,et al. Moderately deep coalbed methane reservoirs in the southern Qinshui Basin:Characteristics and technical strategies for exploitation[J]. Coal Geology & Exploration,2024,52(2):122−133.

[29] 姚红生,陈贞龙,何希鹏,等. 深部煤层气 “有效支撑” 理念及创新实践:以鄂尔多斯盆地延川南煤层气田为例[J]. 天然气工业,2022,42(6):97−106.

YAO Hongsheng,CHEN Zhenlong,HE Xipeng,et al. “Effective support” concept and innovative practice of deep CBM in south Yanchuan Gas Field of the Ordos Basin[J]. Natural Gas Industry,2022,42(6):97−106.

[30] 陈忠辉. 深部煤层气井压裂工艺研究及应用[J]. 石化技术,2024,31(6):257−259.

CHEN Zhonghui. Research and application of deep coalbed methane well fracturing technology[J]. Petrochemical Industry Technology,2024,31(6):257−259.

[31] 刘长松,赵海峰,陈帅,等. 大宁–吉县区块深层煤层气井酸压工艺及现场试验[J]. 煤田地质与勘探,2022,50(9):154−162.

LIU Changsong,ZHAO Haifeng,CHEN Shuai,et al. Acid fracturing technology of deep CBM wells and its field test in Daning-Jixian Block[J]. Coal Geology & Exploration,2022,50(9):154−162.

[32] 熊先钺,甄怀宾,李曙光,等. 大宁–吉县区块深部煤层气多轮次转向压裂技术及应用[J]. 煤田地质与勘探,2024,52(2):147−160.

XIONG Xianyue,ZHEN Huaibin,LI Shuguang,et al. Multi-round diverting fracturing technology and its application in deep coalbed methane in the Daning-Jixian Block[J]. Coal Geology & Exploration,2024,52(2):147−160.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.