•  
  •  
 

Coal Geology & Exploration

Abstract

[Objective] Clarifying the mechanical properties and in-situ stress distributions of coal seams, along with the mechanisms behind their control over the morphologies and propagation behavior of artificially induced fractures, is crucial to the fracturing design, well pattern deployment, and coalbed methane (CBM) production of deep coal seams. [Methods] This study investigated the Nos. 8 and 9 coal seams of the Taiyuan Formation in the Shenfu block in the northern portion of the eastern margin of the Ordos Basin. Using data from sonic logging, density logging, injection/falloff well tests, and production, this study systematically analyzed the mechanical properties and in-situ stress distributions of the coal seams, as well as rock layers on their roofs and floors. Furthermore, this study revealed the mechanisms behind the controlling effects of the mechanical properties and in-situ stress on hydraulic fractures. [Results and Conclusions] Key findings are as follows: (1) The Nos. 8 and 9 coal seams and their roofs and floors consist of six assemblages including mudstone-coal-mudstone (77.4%) and sandstone-coal-mudstone (15.5%). (2) The mechanical parameters, calculated based on sonic and density logging, indicate that the coal seams exhibit elastic moduli ranging from 4.83 GPa to 13.69 GPa (average: 6.28 GPa) and Poisson's ratios ranging from 0.31 to 0.41 (average: 0.37). Regionally, they manifest high brittleness in the north and south and high plasticity in the central part. (3) The calculation results of injection/falloff well tests show that the maximum and minimum horizontal principal stresses in the study area range between 31.11 MPa and 39.11 MPa and between 25.78 GPa and 29.94 MPa, respectively. The sonic logging-based calculation results suggest that various stresses decrease in the order of vertical stress (average: 49.12 MPa), maximum horizontal principal stress (average: 39.50 MPa), and minimum horizontal principal stress (average: 33.80 MPa). The difference in minimum horizontal principal stresses between a coal seam and its roof and floor varies between 0 and 12.75 MPa. (4) The simulation results obtained using software Abaqus and Fracpro PT indicate that higher elastic moduli of the coal seams correspond to larger fracture heights, necessitating preventing fractures from crossing layers in the case of a small difference the mechanical strength of coal seams and that of their roofs. The simulation results also suggest that increasing the difference in the horizontal principal stress of coal seams tends to induce individual fractures along the direction of the maximum horizontal principal stress. Furthermore, lower horizontal principal stresses of the coal seams with respect to their roofs and floors contribute more significantly to the formation of longer, lower, and wider fractures in the coal seams, with a minimal possibility of crossing layers. Overall, the findings lead to the conclusion that the primary approaches for enhancing the hydraulic fracturing performance of the Nos. 8 and 9 coal seams in the Shenfu block include a large fracturing scale, temporary plugging within fractures, and the control of net fracture pressures.

Keywords

deep coalbed methane, coal-rock assemblage type, mechanical property, in-situ stress, numerical simulation

DOI

10.12363/issn.1001-1986.24.03.0167

Reference

[1] 秦勇,申建,李小刚. 中国煤层气资源控制程度及可靠性分析[J]. 天然气工业,2022,42(6):19−32.

QIN Yong,SHEN Jian,LI Xiaogang. Control degree and reliability of CBM resources in China[J]. Natural Gas Industry,2022,42(6):19−32.

[2] 秦勇,申建,史锐. 中国煤系气大产业建设战略价值与战略选择[J]. 煤炭学报,2022,47(1):371−387.

QIN Yong,SHEN Jian,SHI Rui. Strategic value and choice on construction of large CMG industry in China[J]. Journal of China Coal Society,2022,47(1):371−387.

[3] 徐凤银,闫霞,李曙光,等. 鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策[J]. 煤田地质与勘探,2023,51(1):115−130.

XU Fengyin,YAN Xia,LI Shuguang,et al. Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos Basin[J]. Coal Geology & Exploration,2023,51(1):115−130.

[4] 李勇,徐立富,刘宇,等. 深部煤层气水赋存机制、环境及动态演化[J]. 煤田地质与勘探,2024,52(2):40−51.

LI Yong,XU Lifu,LIU Yu,et al. Occurrence mechanism,environment and dynamic evolution of gas and water in deep coal seam[J]. Coal Geology & Exploration,2024,52(2):40−51.

[5] 李勇,徐立富,张守仁,等. 深煤层含气系统差异及开发对策[J]. 煤炭学报,2023,48(2):900−917.

LI Yong,XU Lifu,ZHANG Shouren,et al. Gas bearing system difference in deep coal seams and corresponded development strategy[J]. Journal of China Coal Society,2023,48(2):900−917.

[6] 高玉巧,李鑫,何希鹏,等. 延川南深部煤层气高产主控地质因素研究[J]. 煤田地质与勘探,2021,49(2):21−27.

GAO Yuqiao,LI Xin,HE Xipeng,et al. Study on the main controlling geological factors of high yield deep CBM in southern Yanchuan Block[J]. Coal Geology & Exploration,2021,49(2):21−27.

[7] 李曙光,王成旺,王红娜,等. 大宁–吉县区块深层煤层气成藏特征及有利区评价[J]. 煤田地质与勘探,2022,50(9):59−67.

LI Shuguang,WANG Chengwang,WANG Hongna,et al. Reservoir forming characteristics and favorable area evaluation of deep coalbed methane in Daning-Jixian Block[J]. Coal Geology & Exploration,2022,50(9):59−67.

[8] 侯海海,李强强,梁国栋,等. 准噶尔盆地南缘西山窑组与八道湾组煤层气成藏富集条件对比研究[J]. 非常规油气,2022,9(1):18–24.

HOU Haihai,LI Qiangqiang,LIANG Guodong,et al. Comparative study of CBM accumulation conditions between the Xishanyao Formation and the Badaowan Formation in the southern Junggar Basin[J]. Unconventional Oil & Gas,2022,9(1):18–24.

[9] 杜世涛,安庆,常智泰,等. 新疆煤层气勘探开发迈向新阶段[J]. 非常规油气,2023,10(6):1–7.

DU Shitao,AN Qing,CHANG Zhitai,et al. The exploration and development of coalbed methane in Xinjiang are entering a new stage[J]. Unconventional Oil & Gas,2023,10(6):1–7.

[10] 涂志民,闻星宇,李鹏,等. 后峡盆地复杂构造煤层气成藏主控因素[J]. 西安科技大学学报,2024,44(3):501−511.

TU Zhimin,WEN Xingyu,LI Peng,et al. Main controlling factors of complex structures coalbed methane accumulation in Houxia Basin[J]. Journal of Xi’an University of Science and Technology,2024,44(3):501−511.

[11] 姚艳斌,王辉,杨延辉,等. 煤层气储层可改造性评价:以郑庄区块为例[J]. 煤田地质与勘探,2021,49(1):119−129.

YAO Yanbin,WANG Hui,YANG Yanhui,et al. Evaluation of the hydro-fracturing potential for coalbed methane reservoir:A case study of Zhengzhuang CBM field[J]. Coal Geology & Exploration,2021,49(1):119−129.

[12] 姚红生,肖翠,陈贞龙,等. 延川南深部煤层气高效开发调整对策研究[J]. 油气藏评价与开发,2022,12(4):545−555.

YAO Hongsheng,XIAO Cui,CHEN Zhenlong,et al. Adjustment countermeasures for efficient development of deep coalbed methane in southern Yanchuan CBM Field[J]. Petroleum Reservoir Evaluation and Development,2022,12(4):545−555.

[13] 赵景辉. 埋深对深部煤层气储层物性及开发效果的影响:以鄂尔多斯盆地东南缘延川南区块为例[J]. 油气地质与采收率,2022,29(3):62−67.

ZHAO Jinghui. Effect of burial depth on reservoir petrophysical properties and development performance of deep coalbed methane reservoirs:A case of Yanchuannan Block in southeastern margin of Ordos Basin[J]. Petroleum Geology and Recovery Efficiency,2022,29(3):62−67.

[14] 陈世达,汤达祯,侯伟,等. 深部煤层气地质条件特殊性与储层工程响应[J]. 石油学报,2023,44(11):1993−2006.

CHEN Shida,TANG Dazhen,HOU Wei,et al. Geological particularity and reservoir engineering response of deep coalbed methane[J]. Acta Petrolei Sinica,2023,44(11):1993−2006.

[15] 马东民,王传涛,夏玉成,等. 大佛寺井田煤层气井压裂参数优化方案[J]. 西安科技大学学报,2019,39(2):263−269.

MA Dongmin,WANG Chuantao,XIA Yucheng,et al. Optimization program of fracturing parameters for coalbed methane wells in Dafosi Minefield[J]. Journal of Xi’an University of Science and Technology,2019,39(2):263−269.

[16] 申建,秦勇,傅雪海,等. 深部煤层气成藏条件特殊性及其临界深度探讨[J]. 天然气地球科学,2014,25(9):1470−1476.

SHEN Jian,QIN Yong,FU Xuehai,et al. Properties of deep coalbed methane reservoir-forming conditions and critical depth discussion[J]. Natural Gas Geoscience,2014,25(9):1470−1476.

[17] 高彩霞,禹艺娜,李志军,等. 高、低阶煤孔隙结构差异性及其对甲烷吸附特性的影响研究[J]. 中国煤炭,2024,50(5):113−119.

GAO Caixia,YU Yina,LI Zhijun,et al. Research on the difference of pore structure between high and low rank coal and its influence on methane adsorption characteristics[J]. China Coal,2024,50(5):113−119.

[18] 张亚飞,张松航,邓志宇,等. 基于层次分析灰色定权聚类的煤层气开发甜点预测方法:以柿庄北区块为例[J]. 煤炭科学技术,2024,52(5):166−175.

ZHANG Yafei,ZHANG Songhang,DENG Zhiyu,et al. A prediction method for coalbed methane development sweet spots based on hierarchical analysis and grey fixed-weight clustering:Taking Shizhuangbei Block as an example[J]. Coal Science and Technology,2024,52(5):166−175.

[19] 苏育飞,宋儒. 沁水盆地榆社武乡区块深部煤层气地质特征研究及可改造性评价[J]. 中国煤炭地质,2023,35(5):46−57.

SU Yufei,SONG Ru. Study on geological characteristics of deep CBM inYushewu block,Qinshui Basin and evaluation of transformability[J]. Coal Geology of China,2023,35(5):46−57.

[20] 邱峰,刘晋华,蔡益栋,等. 基于测井的煤层力学特性评价及煤层气开发有利区预测:以沁南郑庄区块3号煤层为例[J]. 煤田地质与勘探,2023,51(4):46−56.

QIU Feng,LIU Jinhua,CAI Yidong,et al. Mechanical property evaluation of coal bed and favorable area prediction of coalbed methane (CBM) development based on well logging:A case study of No.3 coal bed in Zhengzhuang Block,southern Qinshui Basin[J]. Coal Geology & Exploration,2023,51(4):46−56.

[21] 李勇,陈涛,马啸天,等. 煤层顶板间接压裂裂缝扩展机制及影响因素[J]. 煤炭科学技术,2024,52(2):171−182.

LI Yong,CHEN Tao,MA Xiaotian,et al. Extension mechanism and influencing factors of indirect fracturing fractures on coal seam roof[J]. Coal Science and Technology,2024,52(2):171−182.

[22] 张和伟,申建,李可心,等. 鄂尔多斯盆地临兴西区深煤层地应力场特征及应力变化分析[J]. 地质与勘探,2020,56(4):809−818.

ZHANG Hewei,SHEN Jian,LI Kexin,et al. Characteristics of the in situ stress field and stress change of deep coal seams in the western Linxing area,Ordos Basin[J]. Geology and Exploration,2020,56(4):809−818.

[23] XU Lifu,LI Yong,SUN Xiaoguang,et al. Geological controls on gas content in tidal flats-lagoonal and deltaic shales in the northeastern Ordos Basin[J]. Geoenergy Science and Engineering,2023,221:111291.

[24] 李勇,吴鹏,高计县,等. 煤成气多层系富集机制与全含气系统模式:以鄂尔多斯盆地东缘临兴区块为例[J]. 天然气工业,2022,42(6):52−64.

LI Yong,WU Peng,GAO Jixian,et al. Multilayer coal-derived gas enrichment mechanism and whole gas bearing system model:A case study on the Linxing Block along the eastern margin of the Ordos Basin[J]. Natural Gas Industry,2022,42(6):52−64.

[25] 李勇,徐立富,吴鹏,等. 鄂尔多斯盆地东缘海陆过渡相页岩岩相特征及储层差异[J]. 天然气工业,2023,43(8):38−54.

LI Yong,XU Lifu,WU Peng,et al. Lithofacies characteristics and reservoir differences of marine-continental transitional shale in the eastern margin of the Ordos Basin[J]. Natural Gas Industry,2023,43(8):38−54.

[26] 安琦,杨帆,杨睿月,等. 鄂尔多斯盆地神府区块深部煤层气体积压裂实践与认识[J]. 煤炭学报,2024,49(5):2376−2393.

AN Qi,YANG Fan,YANG Ruiyue,et al. Practice and understanding of deep coalbed methane massive hydraulic fracturing in Shenfu Block,Ordos Basin[J]. Journal of China Coal Society,2024,49(5):2376−2393.

[27] WANG Ziwei,LI Yong,WANG Zhuangsen,et al. Factors influencing the methane adsorption capacity of coal and adsorption heat variations[J]. Energy & Fuels,2023,37(17):13080−13092.

[28] 余雄鹰,王越之,李自俊. 声波法计算水平主地应力值[J]. 石油学报,1996,17(3):59−63.

YU Xiongying,WANG Yuezhi,LI Zijun. Calculation of horizontal principal in situ stress with acoustic wave method[J]. Acta Petrolei Sinica,1996,17(3):59−63.

[29] 秦绪英,陈有明,陆黄生. 井中应力场的计算及其应用研究[J]. 石油物探,2003,42(2):271−275.

QIN Xuying,CHEN Youming,LU Huangsheng. Calculation of borehole stress with full-wave acoustic logging data and its application[J]. Geophysical Prospecting for Petroleum,2003,42(2):271−275.

[30] 张迁,王凯峰,周淑林,等. 沁水盆地柿庄南区块地质因素对煤层气井压裂效果的影响[J]. 煤炭学报,2020,45(7):2636−2645.

ZHANG Qian,WANG Kaifeng,ZHOU Shulin,et al. Influence of geological factors on hydraulic fracturing effect of coalbed methane wells in Shizhuangnan Block,Qinshui Basin[J]. Journal of China Coal Society,2020,45(7):2636−2645.

[31] 王晓锋,唐书恒,解慧,等. 沁水盆地南部煤储层水力压裂裂缝发育特征的数值模拟研究[J]. 现代地质,2012,26(3):527−532.

WANG Xiaofeng,TANG Shuheng,XIE Hui,et al. Numerical simulation research on propagation of hydraulic fractures of coal reservoir in south Qinshui Basin[J]. Geoscience,2012,26(3):527−532.

[32] 方正,陈勉,王溯,等. 准噶尔盆地吉木萨尔凹陷页岩水平井水力压裂裂缝形态[J]. 新疆石油地质,2024,45(1):72−80.

FANG Zheng,CHEN Mian,WANG Su,et al. Geometry of hydraulic fractures in fractured horizontal wells in shale reservoirs of Jimsar Sag,Junggar Basin[J]. Xinjiang Petroleum Geology,2024,45(1):72−80.

[33] 张军义,贾光亮. 影响鄂尔多斯盆地致密砂岩储层水力压裂效果关键因素分析[J]. 非常规油气,2024,11(3):114−119.

ZHANG Junyi,JIA Guangliang. Analysis of key factors affecting fracturing effect in tight sandstone reservoir[J]. Unconventional Oil & Gas,2024,11(3):114−119.

[34] 苏广宁. 煤岩复合体水力压裂裂缝穿层扩展实验研究[J]. 矿业安全与环保,2024,51(2):18−24.

SU Guangning. Experimental study on the hydraulic fracture penetration propagation through the layer in coal–rock complex[J]. Mining Safety & Environmental Protection,2024,51(2):18−24.

[35] 邓广哲,王斌辉. 煤岩介质对水压裂隙扩展的影响机理[J]. 西安科技大学学报,2024,44(1):12−22.

DENG Guangzhe,WANG Binhui. Influence mechanism of coal and rock medium on hydraulic fracture propagation[J]. Journal of Xi’an University of Science and Technology,2024,44(1):12−22.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.