•  
  •  
 

Coal Geology & Exploration

Abstract

Backgroud Accurately predicting reservoir parameters is significant for characterizing subsurface reservoirs, establishing gas accumulation patterns, releasing production capacity, and understanding fluid migration. The traditional approaches based on core measurement or mathematical-petrophysical modeling are limited by the strong multiplicity of solutions and low accuracy of elastic parameters inversion results, making it difficult to meet the demands of modern exploration.Objective and Methods To more effectively predict reservoir parameters, this study proposed a petrophysical modeling-guided method for predicting parameters of low-permeability reservoirs. With the convolutional neural network (CNN) as a deep learning framework, the proposed method can predict water saturation, clay content, and porosity based on actual seismic data. Additionally, considering insufficient labeled data, the petrophysical modeling combined with the random perturbation of elastic parameters was adopted to generate high-quality training samples, thus effectively expanding the size of sample data. Results and Conclusions The theoretical model tests demonstrate that: (1) This method can effectively predict the spatial distributions of parameters of low-permeability reservoirs in the case of low sensitivities of reservoir parameters to petrophysics. (2) Compared to data-driven deep learning, this method can yield high-accuracy predicted results of reservoir parameters based on merely a few log data. As substantiated by exploration in the Dongfang block of the Yinggehai Basin, the proposed method facilitates the optimization of well deployment, guiding the achievement of significant exploration breakthroughs and reserve discovery in the low-permeability areas of the basin.

Keywords

deep learning, reservoir parameter prediction, construction of labeled data, low-permeability reservoir, petrophysical modeling

DOI

10.12363/issn.1001-1986.24.02.0134

Reference

[1] WELLER A,SLATER L,BINLEY A,et al. Permeability prediction based on induced polarization:Insights from measurements on sandstone and unconsolidated samples spanning a wide permeability range[J]. Geophysics,2015,80(2):D161−D173.

[2] 王红岩,刘德勋,蔚远江,等. 大面积高丰度海相页岩气富集理论及地质评价技术进展与应用[J]. 煤田地质与勘探,2022,50(3):69−81.

WANG Hongyan,LIU Dexun,YU Yuanjiang,et al. Enrichment theory of large area and high abundance marine shale gas and its geological evaluation technology progress and application[J]. Coal Geology & Exploration,2022,50(3):69−81.

[3] 张林清,张会星,姜效典,等. 弹性参数反演与属性融合技术在“甜点” 预测中的应用[J]. 天然气地球科学,2017,28(4):582−589.

ZHANG Linqing,ZHANG Huixing,JIANG Xiaodian,et al. Application of elastic parameters inversion and attribute fusion technology in the “sweet spot” prediction[J]. Natural Gas Geoscience,2017,28(4):582−589.

[4] ALI AHMADI M,ZENDEHBOUDI S,LOHI A,et al. Reservoir permeability prediction by neural networks combined with hybrid genetic algorithm and particle swarm optimization[J]. Geophysical Prospecting,2013,61(3):582−598.

[5] WANG Pu,CHEN Xiaohong,LI Jingye,et al. Accurate porosity prediction for tight sandstone reservoir:A case study from North China[J]. Geophysics,2020,85(2):B35−B47.

[6] 周守信,徐严波,李士伦,等. 致密泥质砂岩储层的物性预测方法及应用[J]. 天然气工业,2004,24(1):40−43.

ZHOU Shouxin,XU Yanbo,LI Shilun,et al. Predication methods for physical properties of compacted argillaceous sandstone reservoir and its application[J]. Natural Gas Industry,2004,24(1):40−43.

[7] LAMUR A,KENDRICK J E,EGGERTSSON G H,et al. The permeability of fractured rocks in pressurised volcanic and geothermal systems[J]. Scientific Reports,2017,7(1):6173.

[8] LIU X,CHEN X,LI J,et al. Facies identification based on multikernel relevance vector machine:IEEE Transactions on Geoscience and Remote Sensing[J]. 2020,58:7269-7282.

[9] 叶云飞,崔维,张益明,等. 低频模型对波阻抗反演结果定量解释的影响[J]. 中国海上油气,2014,26(6):32−36.

YE Yunfei,CUI Wei,ZHANG Yiming,et al. Impacts of low-frequency models on the quantitative interpretation of acoustic impedance inversion[J]. China Offshore Oil and Gas,2014,26(6):32−36.

[10] 王迪,张益明,刘志斌,等. AVO定量解释模版在LX地区致密气“甜点” 预测中的应用[J]. 石油物探,2020,59(6):936−948.

WANG Di,ZHANG Yiming,LIU Zhibin,et al. Application of an AVO template to identify sweet spots in a tight sandstone reservoir in the LX area[J]. Geophysical Prospecting for Petroleum,2020,59(6):936−948.

[11] JUN H,CHO Y,NOH J. Trans-dimensional Markov chain Monte Carlo inversion of sound speed and temperature:Application to Yellow Sea multichannel seismic data[J]. Journal of Marine Systems,2019,197:103180.

[12] CHO Y,JEONG D,JUN H. 2020b,Semi-auto horizon tracking guided by strata histograms generated with transdimensional Markov-chain Monte Carlo[J]. Geophysical Prospecting,68,1456-1475.

[13] 李松龄. 复杂衰减介质数值模拟与全波形反演方法研究[D]. 大庆:东北石油大学,2023.

LI Songling. Research on numerical simulation and full waveform inversion for complex attenuation medium[D]. Daqing:Northeast Petroleum University,2023.

[14] 孙万元,刘仕友,黄晟,等. 旋转AVO在高孔渗储层评价中的应用:以琼东南盆地深水区为例[J]. 地球物理学进展,2022,37(6):2604−2611.

SUN Wanyuan,LIU Shiyou,HUANG Sheng,et al. Application of rotary AVO in evaluation of high porosity and permeability reservoirs:A case study of deepwater area in Qiongdongnan Basin[J]. Progress in Geophysics,2022,37(6):2604−2611.

[15] GU Yufeng,BAO Zhidong,LIN Yanbo,et al. The porosity and permeability prediction methods for carbonate reservoirs with extremely limited logging data:Stepwise regression vs. N-way analysis of variance[J]. Journal of Natural Gas Science and Engineering,2017,42:99−119.

[16] REGNET J B,FORTIN J,NICOLAS A. Elastic properties of continental carbonates:From controlling factors to an applicable model for acoustic velocity predictions[J]. Geophysics,2019,84(1):MR45−MR59.

[17] HINTON G E,OSINDERO S,TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation,2006,18(7):1527−1554.

[18] SAIKIA P,BARUAH R D,SINGH S K,et al. Artificial Neural Networks in the domain of reservoir characterization:A review from shallow to deep models[J]. Computers & Geosciences,2020,135:104357.

[19] ZHANG Guoyin,WANG Zhizhang,CHEN Yangkang. Deep learning for seismic lithology prediction[J]. Geophysical Journal International,2018,215(2):1368−1387.

[20] TANG Lanlan,ZHANG Miao,WEN L. Support vector machine classification of seismic events in the Tianshan Orogenic Belt[J]. Journal of Geophysical Research:Solid Earth,2020,125:e2019JB018132.

[21] REZA R,JAMIU E. Permeability prediction using machine learning methods for the CO2 injectivity of the precipice sandstone in surat basin,Australia[J]. Energies,2022,15(6):2053.

[22] DING C,MA J W. Automatic migration velocity analysis via deep learning,CNN-tuned spatial filters for P- and S-wave decomposition and applications in elastic imaging[J]. Geophysics,2022,87(4):1JA−WB79.

[23] 崔扬 ,王燕楠 ,陈万利,等. 基于深度学习的地震随机噪声衰减方法研究进展[J]. 石油地球物理勘探,2023,58(5):1269–1283.

CUI Yang,WANG Yannan,CHEN Wanli,et al. Research progress of random noise attenuation methods for seismic data based on deep learning[J]. Oil Geophysical Prospecting,2023,58(5):1269–1283.

[24] YU Bo,SHI Ying,ZHOU Hui,et al. Fast Bayesian linearized inversion with an efficient dimension reduction strategy[J]. IEEE Transactions on Geoscience and Remote Sensing,2024,62:1−10.

[25] 丁燕,杜启振,Qamar Yasin,等. 基于深度学习的裂缝预测在S区潜山碳酸盐岩储层中的应用[J]. 石油物探,2020,59(2):267−275.

DING Yan,DU Qizhen,YASIN Q,et al. Fracture prediction based on deep learning:Application to a buried hill carbonate reservoir in the S area[J]. Geophysical Prospecting for Petroleum,2020,59(2):267−275.

[26] 杨柳青,查蓓,陈伟. 基于深度神经网络的砂岩储层孔隙度预测方法[J]. 中国科技论文,2020,15(1):73−80.

YANG Liuqing,ZHA Bei,CHEN Wei. Prediction method of reservoir porosity based on deep neural network[J]. China Sciencepaper,2020,15(1):73−80.

[27] 陈康,狄贵东,张佳佳,等. 基于改进U-Net卷积神经网络的储层预测[J]. CT理论与应用研究,2021,30(4):403−415.

CHEN Kang,DI Guidong,ZHANG Jiajia,et al. Reservoir prediction based on improved U-net convolutional neural network[J]. Computerized Tomography Theory and Applications,2021,30(4):403−415.

[28] 闫星宇,顾汉明,罗红梅,等. 基于改进深度学习方法的地震相智能识别[J]. 石油地球物理勘探,2020,55(6):1169−1177.

YAN Xingyu,GU Hanming,LUO Hongmei,et al. Intelligent seismic facies classification based on an improved deep learning method[J]. Oil Geophysical Prospecting,2020,55(6):1169−1177.

[29] 王迪,张益明,张繁昌,等. 利用先验信息约束的深度学习方法定量预测致密砂岩“甜点”[J]. 石油地球物理勘探,2023,58(1):65−74.

WANG Di,ZHANG Yiming,ZHANG Fanchang,et al. Quantitative prediction of tight sandstone sweet spots based on deep learning method with prior information constraints[J]. Oil Geophysical Prospecting,2023,58(1):65−74.

[30] WU Y L,MCMECHAN G A. Parametric convolutional neural network-domain full-waveform inversion[J]. Geophysics,2019,84(6):R881-R896.

[31] ZHANG W,GAO J H,YANG T,et al. Least-squares reverse time migration using convolutional neural networks[J]. 2021,86(6):R959-R971.

[32] ABDEL-HAMID O,MOHAMED A R,JIANG Hui,et al. Convolutional neural networks for speech recognition[J]. IEEE/ACM Transactions on Audio,Speech and Language Processing,2014,22(10):1533−1545.

[33] ITURRARÁN-VIVEROS U,PARRA J O. Artificial Neural Networks applied to estimate permeability,porosity and intrinsic attenuation using seismic attributes and well-log data[J]. Journal of Applied Geophysics,2014,107:45−54.

[34] POLSON N,SOKOLOV V. Deep learning:A Bayesian perspective[EB/OL]. 2017:1706.00473. https://arxiv.org/abs/1706.00473v4.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.