Coal Geology & Exploration
Abstract
[Objective] Noise in seismic data significantly affects the accurate interpretation of subsurface stratigraphic information. Given that effective signals with pronounced lateral correlations in seismic data are distributed in specific coefficients but random noise typically spreads uniformly over all coefficients in the curvelet domain, more effective separation of signals can be achieved. [Methods] The convolutional neural network based on the attention mechanism can adaptively extract key information by focusing on important features of images. Hence, this study proposed a noise attenuation method for seismic data using a convolutional neural network based on the curvelet transform and attention mechanism (Curvelet-AU-Net). First, the curvelet coefficients of noise-containing seismic data were obtained through curvelet transform to analyze the distributions of effective signals and noise in the curvelet domain. Second, a U-Net network with a convolutional block attention module (CBAM) was employed, with the curvelet coefficients of noise-containing seismic data as input data for training and the curvelet coefficients of noise-free seismic data as labels. Then, the parameters of the network were updated by comparing the loss function values of actual outputs and labels and backpropagating gradients layer by layer. The network training was completed as the loss function value reached its minimum. Finally, the test data were put into the trained network model. The denoising results of seismic data were obtained by performing inverse curvelet transform on the network output data. [Results and Conclusions] The processing results of simulation and actual data show that compared to conventional methods and ordinary convolutional networks, the method proposed in this study demonstrates superior attenuation effects on common noise (e.g., random noise) under different noise levels and scales, achieving higher signal-to-noise ratios and fidelity for seismic signals. This method, integrating the sparse representation of the Curvelet transform and the adaptability of deep learning models, provides a novel approach for the noise attenuation of seismic data.
Keywords
Seismic data denoising, Deep learning, U-net network, Curvelet transform, Attention mechanism
DOI
10.12363/issn.1001-1986.24.02.0133
Recommended Citation
BAO Qianzong, ZHOU Mei, QIU Yi,
et al.
(2024)
"Seismic data denoising based on the convolutional neural network with an attention mechanism in the curvelet domain,"
Coal Geology & Exploration: Vol. 52:
Iss.
8, Article 16.
DOI: 10.12363/issn.1001-1986.24.02.0133
Available at:
https://cge.researchcommons.org/journal/vol52/iss8/16
Reference
[1] 张军华,吕宁,田连玉,等. 地震资料去噪方法技术综合评述[J]. 地球物理学进展,2006,21(2):546−553.
ZHANG Junhua,LÜ Ning,TIAN Lianyu,et al. An overview of the methods and techniques for seismic data noise attenuation[J]. Progress in Geophysics,2006,21(2):546−553.
[2] 国胧予,刘财,刘洋. 滤波类方法衰减地震数据噪声[J]. 地球物理学进展,2018,33(5):1890−1896.
GUO Longyu,LIU Cai,LIU Yang. Filtering methods attenuate seismic data noise[J]. Progress in Geophysics,2018,33(5):1890−1896.
[3] 张博. 基于稀疏变换的地震数据去噪方法研究[D]. 杭州:浙江大学,2013.
ZHANG Bo. Research of seismic data denoising methods based on sparse transform[D]. Hangzhou:Zhejiang University,2013.
[4] 朱光明,高静怀,王玉贵. 小波变换及其在一维滤波中的应用[J]. 石油物探,1993,32(1):1−10.
ZHU Guangming,GAO Jinghuai,WANG Yugui. Wavelet transform and its application to 1-d filtering[J]. Geophysical Prospecting for Petrole,1993,32(1):1−10.
[5] CANDÈS E,DEMANET L,DONOHO D,et al. Fast discrete curvelet transforms[J]. Multiscale Modeling & Simulation,2006,5(3):861−899.
[6] 胡浩. Radon变换及其在地震资料去噪中的应用研究[D]. 成都:成都理工大学,2014.
HU Hao. Research on radon transform and its application in seismic data noise elimination[D]. Chengdu:Chengdu University of Technology,2014.
[7] 刘洋,FOMEL Sergey,刘财,等. 高阶seislet变换及其在随机噪声消除中的应用[J]. 地球物理学报,2009,52(8):2142−2151.
LIU Yang,SERGEY F,LIU Cai,et al. High-order seislet transform and its application of random noise attenuation[J]. Chinese Journal of Geophysics,2009,52(8):2142−2151.
[8] 颜中辉,栾锡武,王赟,等. 基于经验模态分解的分数维地震随机噪声衰减方法[J]. 地球物理学报,2017,60(7):2845−2857.
YAN Zhonghui,LUAN Xiwu,WANG Yun,et al. Seismic random noise attenuation based on empirical mode decomposition of fractal dimension[J]. Chinese Journal of Geophysics,2017,60(7):2845−2857.
[9] 胡瑞卿,何俊杰,李华飞,等. 时频域变分模态分解地震资料去噪方法[J]. 石油地球物理勘探,2021,56(2):257−264.
HU Ruiqing,HE Junjie,LI Huafei,et al. Seismic data de-noising method based on VMD in time-frequency domain[J]. Oil Geophysical Prospecting,2021,56(2):257−264.
[10] AHARON M,ELAD M,BRUCKSTEIN A. K-SVD:An algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing,2006,54(11):4311−4322.
[11] KRIZHEVSKY A,SUTSKEVER I,HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM,2017,60(6):84−90.
[12] SIMONYAN K,ZISSERMAN A. Very Deep Convolutional Networks for Large-Scale Image Recognition[M/OL]. arXiv,2015. http://arxiv.org/abs/1409.1556.
[13] RONNEBERGER O,FISCHER P,BROX T. U-net:Convolutional networks for biomedical image segmentation[M]//Lecture notes in computer science. Cham:Springer International Publishing,2015:234–241.
[14] ZHANG Kai,ZUO Wangmeng,CHEN Yunjin,et al. Beyond a Gaussian denoiser:Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing,2017,26(7):3142−3155.
[15] CRESWELL A,WHITE T,DUMOULIN V,et al. Generative adversarial networks:An overview[J]. IEEE Signal Processing Magazine,2018,35(1):53−65.
[16] VINCENT P,LAROCHELLE H,LAJOIE I,et al. Stacked denoising autoencoders:Learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research,2010,11:3371−3408.
[17] HINTON G E,OSINDERO S,TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation,2006,18(7):1527−1554.
[18] YU Siwei,MA Jianwei. Deep learning for geophysics:Current and future trends[J]. Reviews of Geophysics,2021,59(3):e2021RG000742.
[19] YU S,MA J,WANG W. Deep learning for denoising[J]. GEOPHYSICS,2019,84(6):V333−V350.
[20] LIU Dawei,WANG Wei,WANG Xiaokai,et al. Poststack seismic data denoising based on 3-D convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing,2020,58(3):1598−1629.
[21] 张超铭,文晓涛,张晓琦,等. 基于DnCNN与约束卷积的地震数据去噪方法[J/OL]. 地球物理学进展,2022:1–18. (2022-03-18). https://kns.cnki.net/kcms/detail/11.2982.P.20220316.1806.032.html.
ZHANG Chaoming,WEN Xiaotao,ZHANG Xiaoqi,et al. Seismic data denoising method based on DnCNN and constrained convolution[J/OL]. Progress in Geophysics,2022:1–18. (2022-03-18). https://kns.cnki.net/kcms/detail/11.2982.P.20220316.1806.032.html.
[22] ZHONG Tie,CHENG Ming,DONG Xintong,et al. Seismic random noise attenuation by applying multiscale denoising convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing,2022,60:5905013.
[23] GUO Liang,LUO Renze,LI Xingyu,et al. Seismic random noise removal based on a multiscale convolution and densely connected network for noise level evaluation[J]. IEEE Access,2022,10:13911−13925.
[24] LIN Hongbo,WANG Shifu,LI Yue. A branch construction-based CNN denoiser for desert seismic data[J]. IEEE Geoscience and Remote Sensing Letters,2021,18(4):736−740.
[25] BAI Tingting,ZHAO Haixia,WANG Zhiqiang. A U-net based deep learning approach for seismic random noise suppression[C]//IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium. Kuala Lumpur,Malaysia. IEEE,2022:6165–6168.
[26] 欧炳霖,曾同生,柳天成,等. 基于Huber-U-Net网络的地震数据重建与去噪[J]. 地球物理学进展,2023,38(6):2540−2552.
OU Binglin,ZENG Tongsheng,LIU Tiancheng,et al. Seismic data reconstruction and de-noising based on Huber-U-Net network[J]. Progress in Geophysics,2023,38(6):2540−2552.
[27] 罗仁泽,李阳阳. 一种基于RUnet卷积神经网络的地震资料随机噪声压制方法[J]. 石油物探,2020,59(1):51−59.
LUO Renze,LI Yangyang. Random seismic noise attenuation based on RUnet convolutional neural network[J]. Geophysical Prospecting for Petroleum,2020,59(1):51−59.
[28] WANG Yu,SHAO Zhenfeng,LU Tao,et al. Remote sensing image super-resolution via multiscale enhancement network[J]. IEEE Geoscience and Remote Sensing Letters,2023,20:3248069.
[29] 俞若水,张勇,周创. 基于深度卷积生成对抗网络的瑞雷波信号随机噪声去除[J]. 地球物理学进展,2020,35(6):2276−2283.
YU Ruoshui,ZHANG Yong,ZHOU Chuang. Deep convolutional generative adversarial network for random noise attenuation in Rayleigh wave signal[J]. Progress in Geophysics,2020,35(6):2276−2283.
[30] 滑世辉,韩立国. 基于深度卷积自编码网络地震数据去噪方法[J]. 地球物理学进展,2023,38(2):654−661.
HUA Shihui,HAN Liguo. Seismic data denoising method based on deep convolutional auto-encoder network[J]. Progress in Geophysics,2023,38(2):654−661.
[31] ZHU Weiqiang,MOUSAVI S M,BEROZA G C. Seismic signal denoising and decomposition using deep neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing,2019,57(11):9476−9488.
[32] CHIRTU M A,RADOI A. Seismic signal denoising using U-net in the time-frequency domain[C]//2022 45th International Conference on Telecommunications and Signal Processing (TSP). Prague,Czech Republic. IEEE,2022:6–10.
[33] IQBAL N. DeepSeg:Deep segmental denoising neural network for seismic data[J]. IEEE Transactions on Neural Networks and Learning Systems,2023,34(7):3397−3404.
[34] LIU Pengju,ZHANG Hongzhi,LIAN Wei,et al. Multi-level wavelet convolutional neural networks[J]. IEEE Access,2019,7:74973−74985.
[35] 邱怡,包乾宗,马铭,等. 基于U-Net网络的二维小波域地震数据随机噪声衰减[J]. 石油物探,2023,62(5):878−890.
QIU Yi,BAO Qianzong,MA Ming,et al. Seismic data random noise attenuation using U-Net network in the 2D discrete wavelet domain[J]. Geophysical Prospecting for Petroleum,2023,62(5):878−890.
[36] DODDA V C,KURUGUNTLA L,MANDPURA A K,et al. Simultaneous seismic data denoising and reconstruction with attention-based wavelet-convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing,2023,61:5908814.
[37] CANDÈS E J,DONOHO D L. New tight frames of curvelets and optimal representations of objects with C2 singularities[J]. Communications on Pure and Applied Mathematics,2004,57(2):219−266.
[38] 包乾宗,陈文超,高静怀. 基于第二代Curvelet变换的地震资料随机噪声衰减[J]. 煤田地质与勘探,2010,38(1):66−70.
BAO Qianzong,CHEN Wenchao,GAO Jinghuai. Seismic data random noise attenuation based on the second generation Curvelet transform[J]. Coal Geology & Exploration,2010,38(1):66−70.
[39] WOO S,PARK J,LEE J Y,et al. CBAM:convolutional block attention module[M]//Computer vision–ECCV 2018. Cham:Springer International Publishing,2018:3–19.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons