•  
  •  
 

Coal Geology & Exploration

Abstract

Objective Burnt rocks are special rocks formed by the surrounding rocks that are baked due to the spontaneous combustion of coal seams. They are extensively distributed in the Yan’an Formation on the northeastern margin of the Ordos Basin. However, the characteristics and formation mechanisms of burning-associated mineral phases in these rocks remain unclear. Methods This study conducted analytical tests and high-temperature heating simulations of protolith to analyze the mineral phases of underground burnt rocks in the Zhangjiamao Coal Mine, Shaanxi Province. Results and Conclusions The results indicate that the underground burnt rocks exhibit enrichment in mafic components, abnormal migration of trace elements like Zn, Rb, Sr, and Zr compared to protoliths, outward migration of rare earth element (REE) Eu, and a La/Yb-∑REE distribution pattern closer to that of granites. Microscopic observations reveal that the burnt rocks feature chloritization, magnetization, and hematitization, as well as palimpsests and mineral melting, with the presence of high-temperature metamorphic crystalline minerals such as cristobalite, tridymite, mullite, and cordierite. Primary metamorphism types of the burnt rocks include recrystallization and melting, while the metasomatic alteration (or assimilation and contamination) observed in typical thermally metamorphosed rocks and hydrous or hydroxyl-bearing minerals are absent. This characteristic may be due to the fact that the burning process occurred in a near-surface low-pressure and open system, where no H2O fluids acted on the material exchange between minerals within the metamorphism system. Based on the burning conditions and mineral assemblages, it can be inferred that the burning process is a special metamorphism type different from other thermal metamorphisms. In combination with previous results, this study proposes that the burnt rocks are characterized by special contact thermal metamorphism, which can be divided into four stages based on metamorphic temperatures: low-temperature dehydration(chloritization and the destruction of hydrous minerals), moderate-temperature oxidation (magnetization and hematitization), high-temperature melting (mullite, cordierite, cristobalite, and tridymite), and complete melting (pyroxene and pseudo-vitreous feldspar). This study systematically summarizes the mineral phases and their transformations in burnt rocks, providing a summary of the metamorphic facies series of burnt rocks based on the analysis of the metamorphic rock facies series and their metamorphic conditions. It can be concluded that temperature and a near-surface low-pressure and open system are the causes of the formation of different burnt rocks.

Keywords

burnt rock, metamorphic phase, high-temperature burning simulation, element enrichment, metamorphic episode, Ordos Basin, Zhangjiamao Coal Mine

DOI

10.12363/issn.1001-1986.23.11.0739

Reference

[1] 黄雷,刘池洋. 鄂尔多斯盆地北部地区延安组煤层自燃烧变产物及其特征[J]. 地质学报,2014,88(9):1753−1761.

HUANG Lei,LIU Chiyang. Products of combustion of the Yan’an Formation coal seam and their characteristics in the northeastern Ordos Basin[J]. Acta Geologica Sinica,2014,88(9):1753−1761.

[2] 彭蕾,余俊,赵惠忠,等. 多孔球形莫来石基浇注料的制备及性能研究[J]. 硅酸盐通报,2023,42(1):319−328.

PENG Lei,YU Jun,ZHAO Huizhong,et al. Preparation and properties of porous spherical mullite-based castable[J]. Bulletin of the Chinese Ceramic Society,2023,42(1):319−328.

[3] GAVSHIN V M,MIROSHNICHENKO L V. Uranium concentration in altered brown coals located under burnt rocks from the Kansk-Achinsk basin,west Siberia[J]. Geostandards and Geoanalytical Reserach,2000,24(2):241−246.

[4] 时志强,杨小康,王艳艳,等. 含煤盆地表生热液铀成矿理论及证据:以伊犁盆地南缘及鄂尔多斯盆地东北部侏罗系为例[J]. 成都理工大学学报(自然科学版),2016,43(6):703−718.

SHI Zhiqiang,YANG Xiaokang,WANG Yanyan,et al. Theory of uranium mineralization caused by supergene hydrothermal fluid in coal-bearing basins:Evidences from Jurassic sandstone in southern Yili Basin and northeastern Ordos Basin,China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2016,43(6):703−718.

[5] 沈永和. 有关高岭岩若干问题的讨论[J]. 地质论评,1959,19(11):515−517.

SHEN Yonghe. Discussion on some problems of gaolingyan[J]. Geological Review,1959,19(11):515−517.

[6] 刘志坚. 论烧变岩的特征、成因及地下火燃烧的规律性[J]. 地质论评,1959,19(5):209−211.

LIU Zhijian. On the characteristics,genesis and regularity of underground fire combustion of burnt rocks[J]. Geological Review,1959,19(5):209−211.

[7] 牛建国. 神府矿区活鸡兔矿井烧变岩水文地质特征[J]. 煤田地质与勘探,2001,29(1):37−39.

NIU Jianguo. Hydrogeological characteristics of burnt rock in Huojitu Mine,Shenfu Mining Area[J]. Coal Geology & Exploration,2001,29(1):37−39.

[8] 黄雷,刘池洋. 烧变岩岩石学及稀土元素地球化学特征[J]. 地球科学,2008,33(4):515−522.

HUANG Lei,LIU Chiyang. Petrologic and REE geochemical characters of burnt rocks[J]. Earth Science,2008,33(4):515−522.

[9] 刘长龄. 论烧变矿床与烧变岩研究及其意义[J]. 地质找矿论丛,1988,3(3):54−61.

LIU Changling. On study of burnt deposits and burnt rocks and their significance[J]. Contributions to Geology and Mineral Resources Research,1988,3(3):54−61.

[10] 管海晏,冯·享特伦,谭永杰,等. 中国北方煤田自燃环境调查与研究[M]. 北京:煤炭工业出版社,1998.

[11] 周英. 柠条塔井田直罗组沉积相与富水性关系的研究[D]. 西安:西安科技大学,2017.

ZHOU Ying. The relationship between water-richness and sedimentary facies of Zhiluo Formation in Ningtiaota Coal Mine[D]. Xi’an:Xi’an University of Science and Technology,2017.

[12] 杨磊,杨斯亮,车晓阳. 红柳林井田烧变岩富水性分区与水害防治措施[J]. 中国煤炭地质,2022,34(2):43−47.

YANG Lei,YANG Siliang,CHE Xiaoyang. Burnt rock water yield property zoning and water hazard control measures in Hongliulin minefield[J]. Coal Geology of China,2022,34(2):43−47.

[13] 高彬,薛小渊,杨帆,等. 张家峁井田火烧区水文地质特征[J]. 煤炭技术,2020,39(8):80−82.

GAO Bin,XUE Xiaoyuan,YANG Fan,et al. Hydrogeological characteristics of burnt rock area in Zhangjiamao Coal Mine[J]. Coal Technology,2020,39(8):80−82.

[14] 姬中奎. 张家峁井田烧变岩与水库水力联系及帷幕截流技术研究[D]. 西安:西安科技大学,2018.

JI Zhongkui. Research on hydraulic connection and curtain closure technology of burnt rock in Zhangjiamao Mine Field and reservoir[D]. Xi’an:Xi’an University of Science and Technology,2018.

[15] 王苏健,冯洁,侯恩科,等. 砂岩微观孔隙结构类型及其对含水层富水性的影响:以柠条塔井田为例[J]. 煤炭学报,2020,45(9):3236−3244.

WANG Sujian,FENG Jie,HOU Enke,et al. Microscopic pore structure types of sandstone and its effects on aquifer water abundance:Taking in Ningtiaota Coal Mine as an example[J]. Journal of China Coal Society,2020,45(9):3236−3244.

[16] 胡鑫,孙强,晏长根,等. 陕北烧变岩水–岩作用的劣化特性[J]. 煤田地质与勘探,2023,51(4):76−84.

HU Xin,SUN Qiang,YAN Changgen,et al. Deterioration characteristics of water-rock interaction on combustion metamorphic rocks in northern Shaanxi[J]. Coal Geology & Exploration,2023,51(4):76−84.

[17] HERRON M M. Geochemical classification of terrigenous sands and shales from core or log data[J]. SEPM Journal of Sedimentary Research,1988,58:820−829.

[18] MCLENNAN S M,TAYLOR S R. Geochemical constraints on the growth of the continental crust[J]. The Journal of Geology,1982,90(4):347−361.

[19] MICHARD A. Rare earth element systematics in hydrothermal fluids[J]. Geochimica et Cosmochimica Acta,1989,53(3):745−750.

[20] GEISSMAN J W,CALLIAN J T,OLDOW J S,et al. Paleomagnetic assessment of oroflexural deformation in west-central Nevada and significance for emplacement of allochthonous assemblages[J]. Tectonics,1984,3(2):179−200.

[21] 石林,解广轰,夏斌. 稀土元素地球化学指数与地幔部分熔融度的关系[J]. 地质科技情报,1996,15(1):51−54.

SHI Lin,XIE Guanghong,XIA Bin. Discussion on relation between geochemical indexs in ree distribution patterns and degrees of partial melting[J]. Geological Science and Technology Information,1996,15(1):51−54.

[22] 范卿雅. Fe(Ⅱ)氧化形成的铁氧化物的晶型与稳定性:共存矿物的影响[D]. 上海:华东师范大学,2022.

FAN Qingya. Crystallinity and stability of iron oxides formed from Fe(Ⅱ) oxidation:The influence of coexisting minerals[D]. Shanghai:East China Normal University,2022.

[23] 陈彬. 中国西北地区侏罗系中烧变岩的特征、形成时代及地质意义[D]. 成都:成都理工大学,2021.

CHEN Bin. Characteristics,ages and geological significance of the Jurassic combustion metamorphic rocks in northwestern China[D]. Chengdu:Chengdu University of Technology,2021.

[24] SEIFERT-KRAUS U,SCHNEIDER H. Cation distribution between cristobalite,tridymite,and coexisting glass phase in used silica bricks[J]. Ceramics International,1984,10(4):135−142.

[25] ROTHENBERG S J,DENEE P B,BRUNDLE C R,et al. Surface and elemental properties of Mount St. Helens volcan icash[J]. Aerosol science and technology,1988,9(3):263−269.

[26] 邢东明,李勇,张秀华,等. 热风炉高温区用硅砖中鳞石英的结构演变[J]. 硅酸盐学报,2019,47(12):1818−1824.

XING Dongming,LI Yong,ZHANG Xiuhua,et al. Behavior of tridymite in silica bricks at high-temperature zone in hot stove[J]. Journal of the Chinese Ceramic Society,2019,47(12):1818−1824.

[27] 罗照华. 透岩浆流体成矿作用导论[M]. 北京:地质出版社,2009.

[28] MIYASHIRO A. Metamorphism and metamorphic bets[M]. London:George Allen & Unwin Limited,1973

[29] 范朝熙,许成,崔莹,等. 碳酸岩岩浆与地壳反应综述[J]. 地学前缘,2022,29(4):330−344.

FAN Chaoxi,XU Cheng,CUI Ying,et al. Carbonatite magma and crustal metasomatism:A review[J]. Earth Science Frontiers,2022,29(4):330−344.

[30] FOGEL R A,RUTHERFORD M J. The solubility of carbon dioxide in rhyolitic melts:A quantitative FTIR study[J]. American Mineralogist,1990,75(11/12):1311−1326.

[31] 夏琼霞. 高压–超高压变质岩石中不同成因的石榴石[J]. 地球科学,2019,44(12):4042−4049.

XIA Qiongxia. Different origins of garnet in high to ultrahigh pressure metamorphic rocks[J]. Earth Science,2019,44(12):4042−4049.

[32] 魏春景. 麻粒岩相变质作用与花岗岩成因-Ⅱ:变质泥质岩高温-超高温变质相平衡与S型花岗岩成因的定量模拟[J]. 岩石学报,2016,32(6):1625−1643.

WEI Chunjing. Granulite facies metamorphism and petrogenesis of granite(Ⅱ):Quantitative modeling of the HT-UHT phase equilibria for metapelites and the petrogenesis of S-type granite[J]. Acta Petrologica Sinica,2016,32(6):1625−1643.

[33] JOHNSON E A. Hydrogen in nominally anhydrous crustal minerals[D]. California:California Institute of Technology,2003.

[34] BURNHAM C W. Water and magmas:a mixing model[J]. Geochimica et Cosmochimica Acta,1975,39(8):1077−1084.

[35] 高雄. 基于伴生稀土高岭土高性能莫来石陶瓷的制备及性能研究[D]. 昆明:昆明理工大学,2023.

GAO Xiong. Preparation and properties of high performance mullite ceramic based on associated rare earth Kaolin[D]. Kunming:Kunming University of Science and Technology,2023.

[36] 赵彦钊,贺云鹏,胡智敏,等. 熔融法和固相反应法制备堇青石及其性能的对比研究[J]. 陕西科技大学学报,2018,36(4):106−110.

ZHAO Yanzhao,HE Yunpeng,HU Zhimin,et al. Preparation of cordierite by melting method and solid-state reaction method and comparative study on its properties[J]. Journal of Shaanxi University of Science & Technology,2018,36(4):106−110.

[37] 杨彦龙,马爱琼,高云琴,等. 以煤矸石为原料制备堇青石-莫来石复合材料[J]. 非金属矿,2022,45(4):5−9.

YANG Yanlong,MA Aiqiong,GAO Yunqin,et al. Preparation of cordierite-mullite composites using coal gangue as materials[J]. Non-Metallic Mines,2022,45(4):5−9.

[38] 贺同兴. 变质岩岩石学[M]. 北京:地质出版社,1988.

[39] 赵宗溥. 成岩作用、埋藏变质作用与近变质作用[J]. 地质论评,1984,30(5):501−509.

ZHAO Zongpu. Diagenesis,burial metamorphism and anchimetamorphism[J]. Geological Review,1984,30(5):501−509.

[40] 高琼英,张智强. 高岭石矿物高温相变过程及其火山灰活性[J]. 硅酸盐学报,1989,17(6):541−548.

GAO Qiongying,ZHANG Zhiqiang. Study on the structural change in the calcination process of kaolinite and its pozzolanic activity[J]. Journal of the Chinese Ceramic Society,1989,17(6):541−548.

[41] 杨丁熬,张绍军. 莫来石质耐火材料在熔融金属中的应用[J]. 国外耐火材料,2003,28(6):29−32.

[42] 高超超,徐艳恒,刘明勇,等. 莫来石–堇青石质废窑具制备轻质隔热材料[J]. 耐火材料,2023,57(4):343−346.

GAO Chaochao,XU Yanheng,LIU Mingyong,et al. Preparation of insulation materials from waste mullite-cordierite kiln furniture[J]. Refractories,2023,57(4):343−346.

[43] 王亚利,倪文,李克庆,等. 难选赤铁矿熔融还原炼铁及熔渣制备微晶玻璃[J]. 工程科学学报,2008,30(9):1032−1036.

WANG Yali,NI Wen,LI Keqing,et al. Preparation of glass-ceramics by the slag of iron melt-reduction from unwieldy hematite[J]. Chinese Journal of Engineering,2008,30(9):1032−1036.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.