•  
  •  
 

Coal Geology & Exploration

Abstract

[Objective] Deep coal-bearing strata contain primary interfaces and layered composite structures. Under the mining disturbance, the fracturing and instability of the primary composite structures of layered coal-rock combinations prove to be a principal cause of disasters such as water inrushes. [Methods] This study aims to explore the impacts of the structures of deep primary coal-rock combinations on the stability of layered rock masses during coal mining. Using fracturing tests under triaxial compression and CT-based reconstruction conducted in the laboratory, this study determined the fracturing differences between deep primary coal-rock combinations and single coal or rock masses. Based on the analyses of the laws of changes in the strength of the interface and cementation areas of deep primary coal-rock combinations, this study identified three dominant instability modes under triaxial compression: instability of low-strength coals, primary cementation interfaces, and high-strength rocks. By revealing the mechanical mechanisms underlying the three instability modes, this study determined that the instability strengths of coal-rock combinations fall between those of low-strength coals and high-strength rocks. [Results and Conclusions] Key findings are as follows: (1) The instability strengths of deep primary coal-rock and coal-rock-coal masses, associated with the rock content and interface structures, fall between those of coal and rock masses. (2) The changing rate of the compressive strength of coals at the primary interface is sensitive to Poisson's ratio, cohesion, and internal friction angle, far exceeding that of rocks. (3) The main fracturing of low-strength coals can penetrate the primary interface, causing the fracturing mechanism of hard rocks to resemble that of rocks with single-fracture structural planes and rendering the instability strength of coal-rock combinations lower than that of rocks. The findings of this study gain a deeper understanding of the mechanism behind disasters caused by instability dueing the mining of deep-layered rock masses.

Keywords

deep mining, primary coal-rock combination, fracturing under triaxial compression, instability mode, coal-rock interface

DOI

10.12363/issn.1001-1986.24.01.0013

Reference

[1] 曹祖宝,王庆涛. 基于覆岩结构效应的导水裂隙带发育特征[J]. 煤田地质与勘探,2020,48(3):145−151.

CAO Zubao,WANG Qingtao. Development characteristics of water conducted fracture zone based on overburden structural effect[J]. Coal Geology & Exploration,2020,48(3):145−151.

[2] 汪铁楠,翟越,高欢,等. 静力压缩下煤岩组合体的裂前宏观弹性模型[J]. 岩土力学,2022,43(4):1031−1040.

WANG Tienan,ZHAI Yue,GAO Huan,et al. A macroscopic elastic model of coal-rock combined body under static compression before cracking[J]. Rock and Soil Mechanics,2022,43(4):1031−1040.

[3] 常锁亮,张生,刘晶,等. 薄互层条件下围岩变化对煤层反射波的影响研究[J]. 煤田地质与勘探,2021,49(5):220−229.

CHANG Suoliang,ZHANG Sheng,LIU Jing,et al. Influence of surrounding rock changes on the coal seam reflected wave under thin interbed condition[J]. Coal Geology & Exploration,2021,49(5):220−229.

[4] 陈绍杰,尹大伟,张保良,等. 顶板–煤柱结构体力学特性及其渐进破坏机制研究[J]. 岩石力学与工程学报,2017,36(7):1588−1598.

CHEN Shaojie,YIN Dawei,ZHANG Baoliang,et al. Mechanical characteristics and progressive failure mechanism of roof-coal pillar structure[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(7):1588−1598.

[5] LIN Yun,GAO Feng,ZHOU Keping,et al. Mechanical properties and statistical damage constitutive model of rock under a coupled chemical-mechanical condition[J]. Geofluids,2019,2019(6):1−17.

[6] 张琨,张森,任建喜,等. 分级静动组合加载下裂隙煤岩破裂特性[J]. 西安科技大学学报,2022,42(3):546−554.

ZHANG Kun,ZHANG Sen,REN Jianxi,et al. Fracture behaviors of prefabricated fractured coal rock under graded static-dynamic coupled loadin[J]. Journal of Xi’an University of Science and Technology,2022,42(3):546−554.

[7] 左建平,陈岩,王超. 深部煤岩组合体破坏力学与模型[M]. 北京:科学出版社,2017.

[8] 宫凤强,叶豪,罗勇. 低加载率范围内煤岩组合体冲击倾向性的率效应试验研究[J]. 煤炭学报,2017,42(11):2852−2860.

GONG Fengqiang,YE Hao,LUO Yong. Rate effect on the burst tendency of coal-rock combined body under low loading rate range[J]. Journal of China Coal Society,2017,42(11):2852−2860.

[9] 牟宗龙,王浩,彭蓬,等. 岩–煤–岩组合体破坏特征及冲击倾向性试验研究[J]. 采矿与安全工程学报,2013,30(6):841−847.

MU Zonglong,WANG Hao,PENG Peng,et al. Experimental research on failure characteristics and bursting liability of rock-coal-rock sample[J]. Journal of Mining & Safety Engineering,2013,30(6):841−847.

[10] LIU Jie,WANG Enyuan,SONG Dazhao,et al. Effect of rock strength on failure mode and mechanical behavior of composite samples[J]. Arabian Journal of Geosciences,2015,8(7):4527−4539.

[11] 陈光波,李元,李谭,等. 循环水岩作用下煤岩组合体力学响应及劣化机制[J]. 工程地质学报,2024,32(1):108−119.

CHEN Guangbo,LI Yuan,LI Tan,et al. Mechanical response and deterioration mechanism of coal-rock combined body under the action of circulating water-rock[J]. Journal of Engineering Geology,2024,32(1):108−119.

[12] 邓敏. 深部煤岩组合体力学特性及能量演化规律真三轴试验研究[D]. 湘潭:湖南科技大学,2022.

DENG Min. True triaxial test on mechanical properties and energy evolution of deep coal-rock mass[D]. Xiangtan:Hunan University of Science and Technology,2022.

[13] 余伟健,潘豹,李可,等. 岩–煤–岩组合体力学特性及裂隙演化规律[J]. 煤炭学报,2022,47(3):1157−1167.

YU Weijian,PAN Bao,LI Ke,et al. Mechanical properties and fracture evolution law of rock-coal-rock combination[J]. Journal of China Coal Society,2022,47(3):1157−1167.

[14] 郑建伟,王书文,李海涛,等. 层面数量对煤岩组合体抗压特性影响的实验研究[J]. 煤田地质与勘探,2023,51(5):11−22.

ZHENG Jianwei,WANG Shuwen,LI Haitao,et al. Experimental study on compressive strength characteristics of coal-rock combinations influenced by number of bedding surfaces[J]. Coal Geology & Exploration,2023,51(5):11−22.

[15] 伍永平,闫壮壮,罗生虎,等. 煤岩组合体应力传递与强度特征倾角效应[J]. 煤炭科学技术,2023,51(1):105−116.

WU Yongping,YAN Zhuangzhuang,LUO Shenghu,et al. Dip effect of stress transfer and structural instability mechanism of coal-rock combination[J]. Coal Science and Technology,2023,51(1):105−116.

[16] 王凯,付强,徐超,等. 原生煤岩组合体界面力学效应数值模拟研究[J]. 岩土力学,2023,44(增刊1):623−633.

WANG Kai,FU Qiang,XU Chao,et al. Numerical simulation study on interface mechanical effect of primary coal-rock combination[J]. Rock and Soil Mechanics,2023,44(Sup.1):623−633.

[17] 解北京,栾铮,刘天乐,等. 静水压下原生组合煤岩动力学破坏特征[J]. 煤炭学报,2023,48(5):2153−2167.

XIE Beijing,LUAN Zheng,LIU Tianle,et al. Dynamic failure characteristics of primary coal-rock combination under hydrostatic pressure[J]. Journal of China Coal Society,2023,48(5):2153−2167.

[18] 蔡永博,王凯,徐超. 煤岩单体及原生组合体变形损伤特性对比试验研究[J]. 矿业科学学报,2020,5(3):278−283.

CAI Yongbo,WANG Kai,XU Chao. Comparative experimental study on deformation and damage characteristics of single coal rock and primary coal-rock combination[J]. Journal of Mining Science and Technology,2020,5(3):278−283.

[19] 雷国荣,李春元,齐庆新,等. 原生层理结构影响下煤岩组合体超声波及CT扫描分析[J]. 煤炭科学技术,2024,52(3):74−86.

LEI Guorong,LI Chunyuan,QI Qingxin,et al. Ultrasonic and CT scanning analysis of coal-rock mass under the primary bedding structure[J]. Coal Science and Technology,2024,52(3):74−86.

[20] 李春元,雷国荣,何团,等. 深部开采原生煤岩组合体围压卸荷致裂特征及破裂模式[J]. 煤炭学报,2023,48(2):678−692.

LI Chunyuan,LEI Guorong,HE Tuan,et al. Crack development characteristics and fracture modes of primary coal-rock mass induced by the unloading of confining pressure in deep coal mining[J]. Journal of China Coal Society,2023,48(2):678−692.

[21] GARDNER G H F,GARDNER L W,GREGORY A R. Formation velocity and density:The diagnostic basics for stratigraphic traps[J]. Geophysics,1974,39(6):770−780.

[22] 钱鸣高,石平五,许家林. 矿山压力与岩层控制[M]. 徐州:中国矿业大学出版社,2010.

[23] 谭学术,鲜学福,郑道访,等. 复合岩体力学理论及其应用[M]. 北京:煤炭工业出版社,1994.

[24] 李斌,王大国. 常规三轴压缩条件下的负乘方型岩石强度准则[J]. 煤田地质与勘探,2020,48(2):152−160.

LI Bin,WANG Daguo. Negative power rock strength criterion under conventional triaxial compression[J]. Coal Geology & Exploration,2020,48(2):152−160.

[25] 吴顺川. 岩石力学[M]. 北京:高等教育出版社,2021.

[26] 左建平,谢和平,吴爱民,等. 深部煤岩单体及组合体的破坏机制与力学特性研究[J]. 岩石力学与工程学报,2011,30(1):84−92.

ZUO Jianping,XIE Heping,WU Aimin,et al. Investigation on failure mechanisms and mechanical behaviors of deep coal-rock single body and combined body[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(1):84−92.

[27] 侯宪港,韦宇翔,秦涛. 不同高度比煤岩组合体的力学特性及裂纹演化数值模拟[J]. 黑龙江科技大学学报,2023,33(4):548−553.

HOU Xiangang,WEI Yuxiang,QIN Tao. Numerical simulation of mechanical properties and crack evolution of coal-rock combination with different height ratios[J]. Journal of Heilongjiang University of Science and Technology,2023,33(4):548−553.

[28] 张雪媛,马昊宾,许健飞,等. 尺寸与形状效应下煤岩组合体力学特性与声发射特征分析[J]. 煤矿安全,2022,53(7):45−51.

ZHANG Xueyuan,MA Haobin,XU Jianfei,et al. Analysis of mechanical properties and acoustic emission characteristic of coal-rock assembly under the effect of size and shape[J]. Safety in Coal Mines,2022,53(7):45−51.

[29] 陈光波,张帅,李谭,等. 煤岩组合体性质与比例影响力学特性规律[J]. 辽宁工程技术大学学报(自然科学版),2021,40(3):198−205.

CHEN Guangbo,ZHANG Shuai,LI Tan,et al. Influence of properties and proportion of coal-rock combined body on the law of mechanical properties[J]. Journal of Liaoning Technical University (Natural Science),2021,40(3):198−205.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.