•  
  •  
 

Coal Geology & Exploration

Abstract

Objective Tar-rich coal, a type of unique unconventional oil and gas resource that integrates coal, oil, and gas, can be transformed into tar, combustible gases, and semi-coke solid fuels with high added value through in-situ pyrolysis. Therefore, the in-situ pyrolysis of tar-rich coal has the potential to meet the challenges in achieving the green exploitation and clean, low-carbon utilization of coals in the traditional coal industry. Furthermore, in terms of how to reduce coal pollution emissions and enhance energy efficiency, this technology offers a new solution for attaining the goals of peak carbon dioxide emissions and carbon neutrality. It also represents an important reference for China to make a breakthrough in strategic dependence in terms of oil and gas resources. However, merely limited pioneering experimental studies have been conducted on the in-situ underground pyrolysis of tar-rich coal in China. Therefore, there is an urgent need to conduct research on the responses of geological environments to the in-situ pyrolysis of tar-rich coal and to explore comprehensive, life-cycle geological guarantee technologies. Methods Based on the characteristics of disturbance to geological environments as their responses to the in-situ pyrolysis, this study highlighted the effects of the in-situ pyrolysis on rock mass metamorphism, the damage and deformations of overburden, disturbance to groundwater, surface subsidence, and surface ecosystem within the pyrolysis zone. A summary was given on the primary aspects and testing techniques for the geological condition assessment and process monitoring for the in-situ pyrolysis of tar-rich coal, presenting the challenges in the geological guarantees for the in-situ pyrolysis. By integrating insights into theoretical research, technical methods, sensing devices and units, data interpretation, multi-source information fusion, and practical engineering, this study presented reflections on the construction of a geological guarantee technology system for the in-situ pyrolysis of tar-rich coal. Results and Conclusions This study concludes that under the novel resource transformation and utilization model—the in-situ pyrolysis of tar-rich coal, there is an urgent need to develop supported geological guarantee technologies, as well as comprehensive methods and standards for the development, design, construction, and evaluation of the technologies, with the purpose of normalizing and guiding the development and applications of technologies for the tar-rich pyrolysis of tar-rich coal. Additionally, it is necessary to actively promote innovations in R&D of technologies for the clean utilization of tar-rich coal, as well as enhancing relevant safety production standards and driving the profound integration with ecological protection measures. These efforts are aimed at providing comprehensive strategic countermeasures and guarantees for the green transformation and efficient, sustainable development of the coal industry.

Keywords

tar-rich coal, low-carbon exploitation, in-situ pyrolysis, geological environment monitoring, geological guarantee

DOI

10.12363/issn.1001-1986.24.01.0044

Reference

[1] 谢克昌. 面向2035年我国能源发展的思考与建议[J]. 中国工程科学,2022,24(6):1−7.

XIE Kechang. China’ s energy development for 2035:Strategic thinking and suggestions[J]. Strategic Study of CAE,2022,24(6):1−7.

[2] 王建立,李艺,徐井,等. “双碳” 目标下我国煤化工产业原料用能研究及政策建议[J]. 中国煤炭,2023,49(9):7−14.

WANG Jianli,LI Yi,XU Jing,et al. Research and policy suggestions on the energy consumption for raw materials uses of coal chemical industry under the carbon peak and carbon neutrality goals in China[J]. China Coal,2023,49(9):7−14.

[3] 王双明,耿济世,李鹏飞,等. 煤炭绿色开发地质保障体系的构建[J]. 煤田地质与勘探,2023,51(1):33−43.

WANG Shuangming,GENG Jishi,LI Pengfei,et al. Construction of geological guarantee system for green coal mining[J]. Coal Geology & Exploration,2023,51(1):33−43.

[4] 刘具,秦坤. 我国煤炭绿色开采技术进展[J]. 矿业安全与环保,2023,50(6):7−15.

LIU Ju,QIN Kun. Progress of green coal mining technology in China[J]. Mining Safety & Environmental Protection,2023,50(6):7−15.

[5] 王双明,刘浪,赵玉娇,等. “双碳” 目标下赋煤区新能源开发:未来煤矿转型升级新路径[J]. 煤炭科学技术,2023,51(1):59−79.

WANG Shuangming,LIU Lang,ZHAO Yujiao,et al. New energy exploitation in coal–endowed areas under the target of “double carbon”:A new path for transformation and upgrading of coal mines in the future[J]. Coal Science and Technology,2023,51(1):59−79.

[6] 田华,王前吉,张晴,等. 富油煤热解焦油在粉砂中的自然降解与挥发行为[J]. 环境工程学报,2023,17(8):2665−2673.

TIAN Hua,WANG Qianji,ZHANG Qing,et al. Natural degradation and volatilization of oil–rich coal pyrolysis tar in siltly sand[J]. Chinese Journal of Environmental Engineering,2023,17(8):2665−2673.

[7] 尚建选,张喻,闵楠,等. 陕西煤业化工集团煤化工产业高质量发展研究[J]. 中国煤炭,2022,48(8):14−19.

SHANG Jianxuan,ZHANG Yu,MIN Nan,et al. Research on high–quality development of coal chemical industry in Shaanxi Coal and Chemical Industry Group[J]. China Coal,2022,48(8):14−19.

[8] 谢和平,苗鸿雁,周宏伟. 我国矿业学科“十四五” 发展战略研究[J]. 中国科学基金,2021,35(6):856−863.

XIE Heping,MIAO Hongyan,ZHOU Hongwei. Development strategy of mining discipline in China during the 14th Five–Year Plan period[J]. Bulletin of National Natural Science Foundation of China,2021,35(6):856−863.

[9] 马丽,王双明,段中会,等. 陕西省富油煤资源潜力及开发建议[J]. 煤田地质与勘探,2022,50(2):1−8.

MA Li,WANG Shuangming,DUAN Zhonghui,et al. Potential of oil–rich coal resources in Shaanxi Province and its new development suggestion[J]. Coal Geology & Exploration,2022,50(2):1−8.

[10] 贾县民,王喜莲,翟桢桐. 碳达峰视阈下煤炭工业高质量发展内涵、评价及发展路径[J]. 西安科技大学学报,2022,42(3):589−599.

JIA Xianmin,WANG Xilian,ZHAI Zhentong. Connotation,evaluation and development path of high–quality development of coal industry from the perspective of carbon peak[J]. Journal of Xi’an University of Science and Technology,2022,42(3):589−599.

[11] 侯金武,余洋. 试论科学推进矿山生态修复[J]. 矿业安全与环保,2023,50(6):1−6.

HOU Jinwu,YU Yang. Discourse on scientific advancements in mining ecological restoration[J]. Mining Safety & Environmental Protection,2023,50(6):1−6.

[12] 王双明,王虹,任世华,等. 西部地区富油煤开发利用潜力分析和技术体系构想[J]. 中国工程科学,2022,24(3):49−57.

WANG Shuangming,WANG Hong,REN Shihua,et al. Potential analysis and technical conception of exploitation and utilization of tar–rich coal in western China[J]. Strategic Study of CAE,2022,24(3):49−57.

[13] 王苗,王长安,宁星,等. 富油煤原位热解技术研究现状及进展[J/OL]. 煤炭学报,2023:1–15. [2024-05-25] https://doi.org/10.13225/j.cnki.jccs.2023.0790.

WANG Miao,WANG Chang’an,NING Xing,et al. Research progress of in–situ pyrolysis technology for tar–rich coal[J/OL]. Journal of China Coal Society,2023:1–15. [2024-05-25] https://doi.org/10.13225/j.cnki.jccs.2023.0790.

[14] 谢和平. 煤炭发展的未来之路[J]. 当代矿工,2019(11):2−5.

XIE Heping. The future road of coal development[J]. Modern Miner,2019(11):2−5.

[15] 葛世荣. 深部煤炭化学开采技术[J]. 中国矿业大学学报,2017,46(4):679−691.

GE Shirong. Chemical mining technology for deep coal resources[J]. Journal of China University of Mining & Technology,2017,46(4):679−691.

[16] 王双明,师庆民,王生全,等. 富油煤的油气资源属性与绿色低碳开发[J]. 煤炭学报,2021,46(5):1365−1377.

WANG Shuangming,SHI Qingmin,WANG Shengquan,et al. Resource property and exploitation concepts with green and low–carbon of tar–rich coal as coal–based oil and gas[J]. Journal of China Coal Society,2021,46(5):1365−1377.

[17] 赵阳升,梁卫国,冯子军,等. 原位改性流体化采矿科学、技术与工程[J]. 煤炭学报,2021,46(1):25−35.

ZHAO Yangsheng,LIANG Weiguo,FENG Zijun,et al. Science,technology and engineering of in-situ modified mining by fluidization[J]. Journal of China Coal Society,2021,46(1):25−35.

[18] 万志军,毕世科,张源,等. 煤–热共采的理论与技术框架[J]. 煤炭学报,2018,43(8):2099−2106.

WAN Zhijun,BI Shike,ZHANG Yuan,et al. Framework of the theory and technology for simultaneous extraction of coal and geothermal resources[J]. Journal of China Coal Society,2018,43(8):2099−2106.

[19] 毛崎森,王长安,侯育杰,等. 富油煤原位热解对流加热过程传热规律数值模拟[J]. 洁净煤技术,2023,29(8):19−29.

MAO Qisen,WANG Chang’an,HOU Yujie,et al. Numerical simulation of heat transfer during in-situ convection heating pyrolysis of tar–rich coal[J]. Clean Coal Technology,2023,29(8):19−29.

[20] 段中会,马丽,傅德亮,等. 大保当井田富油煤地下原位热解开发前景展望[J]. 中国煤炭地质,2023,35(8):1−6.

DUAN Zhonghui,MA Li,FU Deliang,et al. Prospect of in–situ pyrolysis development of oil–rich coal in Dabaodang[J]. Coal Geology of China,2023,35(8):1−6.

[21] 尚煜超,刘向荣,石晨,等. 郭家沟富油煤细菌降解产腐殖酸研究[J]. 中国煤炭,2023,49(1):89−99.

SHANG Yuchao,LIU Xiangrong,SHI Chen,et al. Study on the production of humic acid by bacterial degradation of Guojiagou oil–rich coal[J]. China Coal,2023,49(1):89−99.

[22] 王越,丁华,武琳琳,等. 黄陵煤显微组分性质及原位热解实验研究[J]. 燃料化学学报,2021,49(11):1567−1576.

WANG Yue,DING Hua,WU Linlin,et al. The characteristics of maceral in Huangling coal and its in–situ pyrolysis[J]. Journal of Fuel Chemistry and Technology,2021,49(11):1567−1576.

[23] 师庆民,米奕臣,王双明,等. 富油煤热解流体滞留特征及其机制[J]. 煤炭学报,2022,47(3):1329−1337.

SHI Qingmin,MI Yichen,WANG Shuangming,et al. Trap characteristic and mechanism of volatiles during pyrolysis of tar–rich coal[J]. Journal of China Coal Society,2022,47(3):1329−1337.

[24] 郭威,刘召,孙友宏,等. 富油煤原位热解开发地下体系封闭方法探讨[J]. 煤田地质与勘探,2023,51(1):107−114.

GUO Wei,LIU Zhao,SUN Youhong,et al. Discussion on underground system sealing methods in in–situ pyrolysis exploitation of tar–rich coal[J]. Coal Geology & Exploration,2023,51(1):107−114.

[25] 邹卓,张莉,孙杰,等. 富油煤热解技术及利用前景研究[J]. 中国煤炭地质,2022,34(11):31−34.

ZOU Zhuo,ZHANG Li,SUN Jie,et al. Study on pyrolysis technology and utilization prospect of oil–rich coal[J]. Coal Geology of China,2022,34(11):31−34.

[26] 张梅,房欣怡. 为富油煤绿色开发提供支撑[N]. 陕西日报,2023–07–28(9).

[27] SHI Qingmin,MI Yichen,WANG Shuangming,et al. Pyrolysis behavior of tar–rich coal with various coal–forming environments:A TGA and in–situ transmission FTIR study[J]. Fuel,2024,358:130250.

[28] 王双明,孙强,胡鑫,等. 煤炭原位开发地质保障[J]. 西安科技大学学报,2024,44(1):1−11.

WANG Shuangming,SUN Qiang,HU Xin,et al. Geological guarantee for in–situ development of coal[J]. Journal of Xi’an University of Science and Technology,2024,44(1):1−11.

[29] 马丽,段中会,杨甫,等. “双碳” 背景下煤炭原位地下热解采油意义研究[J]. 中国煤炭地质,2022,34(4):5−7.

MA Li,DUAN Zhonghui,YANG Fu,et al. Study on the significance of coal in–situ underground pyrolytic oil production under carbon peaking and carbon neutrality background[J]. Coal Geology of China,2022,34(4):5−7.

[30] 全球第一桶地下原位热解煤焦油在陕西产出[J]. 化工管理,2024(3):41.

The world’s first barrel of underground in–situ pyrolysis coal tar was produced in Shaanxi[J]. Chemical Engineering Management,2024(3):41.

[31] HILL R W,THORSNESS C B,CENA R J,et al. Results of the Centralia underground coal gasification field test[C]//Lawrence Livermore National Lab. CA(USA). Proc. 10th Annual UCG Symposium. 1984:OSTI ID 6649695.

[32] 王瀚姣. 双金属负载USY催化热解黄陵富油煤研究[D]. 西安:西安科技大学,2022.

WANG Hanjiao. Study on the catalytic pyrolysis of Huangling tar–rich coal over bimetal supported USY[D]. Xi’an:Xi’an University of Science and Technology,2022.

[33] 陈美静,漆博文,王长安,等. 富油煤地下原位热解余热利用过程数值模拟[J]. 洁净煤技术,2023,29(1):48−58.

CHEN Meijing,QI Bowen,WANG Chang’an,et al. Numerical simulation of waste heat utilization process after in–situ pyrolysis of tar–rich coal[J]. Clean Coal Technology,2023,29(1):48−58.

[34] 王双明,鲍园,郝永辉,等. 富油煤研究进展与趋势[J]. 煤田地质与勘探,2024,52(4):1−11.

WANG Shuangming,BAO Yuan,HAO Yonghui,et al. Research on tar–rich coals:Progress and prospects[J]. Coal Geology & Exploration,2024,52(4):1−11.

[35] 王双明,申艳军,孙强,等. “双碳” 目标下煤炭开采扰动空间CO2地下封存途径与技术难题探索[J]. 煤炭学报,2022,47(1):45−60.

WANG Shuangming,SHEN Yanjun,SUN Qiang,et al. Underground CO2 storage and technical problems in coal mining area under the “dual carbon” target[J]. Journal of China Coal Society,2022,47(1):45−60.

[36] 张平松,许时昂,傅先杰,等. 煤层采动巨厚松散层全断面监测及内部变形特征[J]. 煤炭学报,2024,49(1):628−644.

ZHANG Pingsong,XU Shiang,FU Xianjie,et al. Internal deformation characteristics and full section monitoring for extremely thick loose layers under mining conditions[J]. Journal of China Coal Society,2024,49(1):628−644.

[37] 刘汉斌. 新时代山西煤炭地质工作若干问题的思考[J]. 中国煤炭,2019,45(1):18−25.

LIU Hanbin. Thoughts on several problems of coal geology work in the New Era based on Shanxi Province[J]. China Coal,2019,45(1):18−25.

[38] 董光顺,朱超凡,厉家宗,等. 黄陵矿区富油煤对流加热原位转化开发效果数值模拟[J]. 煤田地质与勘探,2023,51(4):57−67.

DONG Guangshun,ZHU Chaofan,LI Jiazong,et al. Numerical simulation on development effect of tar–rich coal through in–situ conversion by convective heating in Huangling Mining Area[J]. Coal Geology & Exploration,2023,51(4):57−67.

[39] 王国法,张建中,薛国华,等. 煤矿回采工作面智能地质保障技术进展与思考[J]. 煤田地质与勘探,2023,51(2):12−26.

WANG Guofa,ZHANG Jianzhong,XUE Guohua,et al. Progress and reflection of intelligent geological guarantee technology in coal mining face[J]. Coal Geology & Exploration,2023,51(2):12−26.

[40] 袁亮,张平松. 煤炭精准开采透明地质条件的重构与思考[J]. 煤炭学报,2020,45(7):2346−2356.

YUAN Liang,ZHANG Pingsong. Framework and thinking of transparent geological conditions for precise mining of coal[J]. Journal of China Coal Society,2020,45(7):2346−2356.

[41] 王双明,范立民,黄庆享,等. 榆神矿区煤水地质条件及保水开采[J]. 西安科技大学学报,2010,30(1):1−6.

WANG Shuangming,FAN Limin,HUANG Qingxiang,et al. Coal water geological conditions and water conserving mining for Yushen coal mine area[J]. Journal of Xi’an University of Science and Technology,2010,30(1):1−6.

[42] 高平,靳志龙,刘文明. 煤矿透明地质系统构建技术及应用[J]. 中国煤炭,2022,48(增刊1):6–11.

GAO Ping,JIN Zhilong,LIU Wenming. Construction technology and application of transparent geological system for coal mine[J]. China Coal,2022,48(Sup.1):6–11.

[43] 胡莹. 油页岩原位开采全过程中地表变形时空演化研究[D]. 长春:吉林大学,2023.

HU Ying. Study on spatiotemporal evolution of surface deformation during In–situ exploitation of oil shale[D]. Changchun:Jilin University,2023.

[44] 朱妍. 中国工程院院士王双明:“煤炭兜底” 与“绿色低碳” 并行不悖[N]. 中国能源报,2021–07–12(16).

[45] 张平松,欧元超,李圣林. 我国矿井物探技术及装备的发展现状与思考[J]. 煤炭科学技术,2021,49(7):1−15.

ZHANG Pingsong,OU Yuanchao,LI Shenglin. Development quo–status and thinking of mine geophysical prospecting technology and equipment in China[J]. Coal Science and Technology,2021,49(7):1−15.

[46] 李改改,姜鹏飞,黄佳齐,等. 富油煤热解过程动力学参数变化规律研究[J]. 煤炭技术,2023,42(10):52−56.

LI Gaigai,JIANG Pengfei,HUANG Jiaqi,et al. Study on change of kinetic parameters of tar–rich coal during pyrolysis[J]. Coal Technology,2023,42(10):52−56.

[47] JU Yang,ZHU Yan,ZHANG Yuwei,et al. Effects of high–power microwave irradiation on tar–rich coal for realising in–situ pyrolysis,fragmentation,and low–carbon utilisation of tar–rich coal[J]. International Journal of Rock Mechanics and Mining Sciences,2022,157:105165.

[48] 张坤. 煤矿覆岩离层注浆开采地表减沉与土壤减损响应机制[D]. 淮南:安徽理工大学,2022.

ZHANG Kun. Response mechanism of surface subsidence reduction and soil damage reduction in terms of coal mining with grouting into overburden bed–separation[D]. Huainan:Anhui University of Science & Technology,2022.

[49] 董书宁,刘再斌,程建远,等. 煤炭智能开采地质保障技术及展望[J]. 煤田地质与勘探,2021,49(1):21−31.

DONG Shuning,LIU Zaibin,CHENG Jianyuan,et al. Technology and prospect of geclogical guarantee for intelligent coal mining[J]. Coal Geology & Exploration,2021,49(1):21−31.

[50] 孙强,张卫强,耿济世,等. 利用煤炭开发地下空间储能的技术路径与地质保障[J]. 煤田地质与勘探,2023,51(2):229−242.

SUN Qiang,ZHANG Weiqiang,GENG Jishi,et al. Technological path and geological guarantee for energy storage in underground space formed by coal mining[J]. Coal Geology & Exploration,2023,51(2):229−242.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.