•  
  •  
 

Coal Geology & Exploration

Authors

WANG Shuangming, Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an University of Science and Technology, Xi’an 710054, China; College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, ChinaFollow
SHI Qingmin, Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an University of Science and Technology, Xi’an 710054, China; College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China
SUN Qiang, Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an University of Science and Technology, Xi’an 710054, China; College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China
CUI Shidong, Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an University of Science and Technology, Xi’an 710054, China; College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China
KOU Bingyang, Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an University of Science and Technology, Xi’an 710054, China; College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China
QIAO Junwei, Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an University of Science and Technology, Xi’an 710054, China; College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China
GENG Jishi, Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an University of Science and Technology, Xi’an 710054, China; College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China
ZHANG Lei, Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an University of Science and Technology, Xi’an 710054, China; College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China
TIAN Hua, Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an University of Science and Technology, Xi’an 710054, China; College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China
JIANG Pengfei, Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an University of Science and Technology, Xi’an 710054, China; College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China
CAI Yue, Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an University of Science and Technology, Xi’an 710054, China; College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China
LIU Lang, Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an University of Science and Technology, Xi’an 710054, China; College of Energy, Xi’an University of Science and Technology, Xi’an 710054, China

Abstract

Background Given China's significant demand shortfall of oil and gas, numerous constraints on oil and gas supply, an arduous task of green and low-carbon energy transition of coals, tar-rich coals, a type of coal resource integrating the properties of coal, oil, and gas, have great potential for increasing the oil and gas supply of the country. Advances Despite the successful engineering test conducted in Yulin, Shaanxi Province, in-situ pyrolysis of tar-rich coals remains in its exploratory stage. This technology holds great strategic value in two aspects: (1) It enables reduced demand shortfall of oil and gas in China to enhance the country's ability to independently guarantee oil and gas supply. (2) It allows for reforms of coal mining technologies to promote the green, low-carbon coal energy transition and development of the coal industry. The in-situ pyrolysis of tar-rich coals is primarily achieved using boreholes and mines, aiming to extract oil and gas from coals in a sustainable and efficient manner. This technology principally faces challenges in siting, heating technology, and efficient heat and mass transfer. Prospects The key to the research and development of in-situ pyrolysis involves the suitability of geological conditions, the matching of heating technology, the effectiveness of heat and mass transfer, and the safety and stability of pyrolysis, which are detailed as follows: (1) It is necessary to elucidate the geological foundation suitable for the in-situ pyrolysis of tar-rich coals and reveal the constraints on the dynamic sealing stability of surrounding rocks within the thermal radiation range from the perspective of the resource conditions of tar-rich coals, stratigraphic sealing performance, hydrogeological conditions, and structural conditions. The purpose is to provide a geological basis for the siting and engineering design of in-situ pyrolysis. (2) It is necessary to thoroughly understand the evolutionary behavior of the thermophysical properties of tar-rich coals under temperature and stress constraints, demonstrate the suitability of in-situ heating technology based on geological and engineering conditions, design efficient heating processes tailored to the poor thermal conductivity of coal seams, and achieve an economical energy supply for heating via mutual complementation of multiple energy sources such as wind, light, and electricity. (3) Major factors restricting the transport and production of oil and gas from in-situ pyrolysis include in-situ stress, large-scale coals, and high tar viscosity. Correspondingly, potential methods for enhancing the heat and mass transfer of coal seams and improving the producibility of oil and gas through pyrolysis encompass coal seam fracturing, the optimization of heat-carrying media combined with temperature and pressure control, and tar viscosity reduction for lightweight. (4) The sustained and stable operation of in-situ pyrolysis relies on the whole-process monitoring and dynamic early warning, requiring support from comprehensive monitoring means, precise inversion of geological information, modeling of multiphase and multifield environments, and prediction and early warning of thresholds for abrupt changes. To advance the development of in-situ pyrolysis of tar-rich coals, the key is to further explore vital technologies for sustained and efficient pyrolysis of tar-rich coals tailored to geological conditions in order to resolve the contradiction between coal resource exploitation and geological environments.

Keywords

tar-rich coal, in-situ pyrolysis, oil and gas resources, geological conditions, heating technology, heat and mass transfer, safety and stability

DOI

10.12363/issn.1001-1986.24.06.0412

Reference

[1] 中共中央. 中共中央国务院关于新时代推进西部大开发形成新格局的指导意见[R]. 2020-5-17. https://www.gov.cn/gongbao/content/2020/content_5515272.htm.

[2] 国家发展改革委. 国家能源局关于印发《能源生产和消费革命战略(2016-2030)》的通知[R]. 2016-12-29. https://www.ndrc.gov.cn/xxgk/zcfb/tz/201704/t20170425_962953_ext.html.

[3] 国家统计局. 中国统计年鉴 2023[M]. 北京:中国统计出版社,2023.

[4] 秦红艳,栾利新,鲁彬,等. 煤焦油和原油层析色谱轻质组分分离及GC/MS特点分析[J]. 炼油与化工,2019,30(4):60−63.

QIN Hongyan,LUAN Lixin,LU Bin,et al. Separation of light components and GC/MS characteristics of coal tar and crude oil chromatography[J]. Refining and Chemical Industry,2019,30(4):60−63.

[5] 张军民,刘弓. 低温煤焦油的综合利用[J]. 煤炭转化,2010,33(3):92−96.

ZHANG Junmin,LIU Gong. Comprehensive utilization of low-temperature coal tar[J]. Coal Conversion,2010,33(3):92−96.

[6] 张晔,赵亮富. 中/低温煤焦油催化加氢制备清洁燃料油研究[J]. 煤炭转化,2009,32(3):48−51.

ZHANG Ye,ZHAO Liangfu. Study on hydro-catalysis of middle/low-temperature coal tar to clean fuel[J]. Coal Conversion,2009,32(3):48−51.

[7] 张立国,任伟,刘德军,等. 半焦作为高炉喷吹用煤研究[J]. 鞍钢技术,2015(1):13−17.

ZHANG Liguo,REN Wei,LIU Dejun,et al. Study on semi-coke used as pulverized coal for injection into blast furnace[J]. Angang Technology,2015(1):13−17.

[8] 张磊,林银波. 半焦替代部分无烟煤喷吹的试验研究[J]. 河南冶金,2019,27(5):4−5.

ZHANG Lei,LIN Yinbo. Experimental research on injection of semi-coke to substitute partial anthracite[J]. Henan Metallurgy,2019,27(5):4−5.

[9] 王观宏,冯睿智,简阔,等. 基于低温液氮吸附实验的沁南无烟煤孔隙结构特征[J]. 中国科技论文,2022,17(5):488−494.

WANG Guanhong,FENG Ruizhi,JIAN Kuo,et al. Pore structure characteristics of anthracite coal in southern Qinshui Basin based on low-temperature nitrogen adsorption method[J]. China Sciencepaper,2022,17(5):488−494.

[10] 潘结南,张召召,李猛,等. 煤的多尺度孔隙结构特征及其对渗透率的影响[J]. 天然气工业,2019,39(1):64−73.

PAN Jienan,ZHANG Zhaozhao,LI Meng,et al. Characteristics of multi-scale pore structure of coal and its influence on permeability[J]. Natural Gas Industry,2019,39(1):64−73.

[11] 田增辉. 比德–三塘盆地主采煤层煤岩力学性质特征[J]. 陕西煤炭,2016,35(3):28−30.

TIAN Zenghui. Coal-rock mechanical property characteristics of main minable coal seam in the Bide-Santang Basin[J]. Shaanxi Coal,2016,35(3):28−30.

[12] 张帅,马汝嘉,刘路,等. 扎鲁特地区无烟煤分子结构特征和模型构建[J]. 煤田地质与勘探,2020,48(1):62−69.

ZHANG Shuai,MA Rujia,LIU Lu,et al. Molecular structure characteristics and model construction of anthracite in Jarud[J]. Coal Geology & Exploration,2020,48(1):62−69.

[13] 吴帆,刘长武,许晨曦,等. 龙口油页岩及其半焦的基本物理力学性质对比试验研究[J]. 现代矿业,2017,33(7):86−88.

WU Fan,LIU Changwu,XU Chenxi,et al. Comparative experimental study on basic physical and mechanical properties of Longkou oil shale and its semi-coke[J]. Modern Mining,2017,33(7):86−88.

[14] 万志军,冯子军,赵阳升,等. 高温三轴应力下煤体弹性模量的演化规律[J]. 煤炭学报,2011,36(10):1736−1740.

WAN Zhijun,FENG Zijun,ZHAO Yangsheng,et al. Elastic modulus’s evolution law of coal under high temperature and triaxial stress[J]. Journal of China Coal Society,2011,36(10):1736−1740.

[15] SHI Qingmin,CUI Shidong,WANG Shuangming,et al. Experiment study on CO2 adsorption performance of thermal treated coal:Inspiration for CO2 storage after underground coal thermal treatment[J]. Energy,2022,254:124392.

[16] 王双明,孙强,薛圣泽,等. 一种富油煤地下原位气化与热解一体化共采方法:CN113803040A[P]. 2021-12-17.

[17] 王双明,王虹,任世华,等. 西部地区富油煤开发利用潜力分析和技术体系构想[J]. 中国工程科学,2022,24(3):49−57.

WANG Shuangming,WANG Hong,REN Shihua,et al. Potential analysis and technical conception of exploitation and utilization of tar-rich coal in western China[J]. Strategic Study of CAE,2022,24(3):49−57.

[18] 王双明,师庆民,王生全,等. 富油煤的油气资源属性与绿色低碳开发[J]. 煤炭学报,2021,46(5):1365−1377.

WANG Shuangming,SHI Qingmin,WANG Shengquan,et al. Resource property and exploitation concepts with green and low-carbon of tar-rich coal as coal-based oil and gas[J]. Journal of China Coal Society,2021,46(5):1365−1377.

[19] 王双明,孙强,胡鑫,等. 煤炭原位开发地质保障[J]. 西安科技大学学报,2024,44(1):1−11.

WANG Shuangming,SUN Qiang,HU Xin,et al. Geological guarantee for in-situ development of coal[J]. Journal of Xi’an University of Science and Technology,2024,44(1):1−11.

[20] SMITH P J,DEO M,EDDINGS E,et al. Underground coal thermal treatment[R]. Universuty of Utah,Salt Lake City,UT (United States),2012.

[21] 张思思. 陕北煤含油 采煤先采油[EB/OL]. 新华网,[2024-01-15].

[22] SHI Qingmin,LI Chunhao,WANG Shuangming,et al. Variation of molecular structures affecting tar yield:A comprehensive analysis on coal ranks and depositional environments[J]. Fuel,2023,335:127050.

[23] SHI Qingmin,LI Chunhao,WANG Shuangming,et al. Effect of the depositional environment on the formation of tar-rich coal:A case study in the northeastern Ordos Basin,China[J]. Journal of Petroleum Science and Engineering,2022,216:110828.

[24] 薛香玉,王长安,邓磊,等. 基于全生命周期的富油煤原位热解碳排放[J]. 煤炭学报,2023,48(4):1773−1781.

XUE Xiangyu,WANG Chang’an,DENG Lei,et al. Carbon emissions from in-situ pyrolysis of tar-rich coal based on full life cycle analysis method[J]. Journal of China Coal Society,2023,48(4):1773−1781.

[25] 张莉,宁树正,舒新前,等. 格金干馏炉与铝甑干馏炉在煤热解焦油产率上的对比分析[J]. 中国煤炭地质,2021,33(10):76−78.

ZHANG Li,NING Shuzheng,SHU Xinqian,et al. Comparative analysis of coal pyrolysis tar yields from gray-king gas retort and aluminum gas retort[J]. Coal Geology of China,2021,33(10):76−78.

[26] LIU Peng,ZHANG Dexiang,WANG Lanlan,et al. The structure and pyrolysis product distribution of lignite from different sedimentary environment[J]. Applied Energy,2016,163:254−262.

[27] 师庆民,王双明,王生全,等. 神府南部延安组富油煤多源判识规律[J]. 煤炭学报,2022,47(5):2057−2066.

SHI Qingmin,WANG Shuangming,WANG Shengquan,et al. Multi-source identification and internal relationship of tar-rich coal of the Yan’an Formation in the south of Shenfu[J]. Journal of China Coal Society,2022,47(5):2057−2066.

[28] 顾斌. 热力耦合作用下岩体物理力学特性及煤炭地下气化特征场研究[D]. 徐州:中国矿业大学,2021.

GU Bin. Research on rock physico-mechanical properties and underground coal gasification characteristics field under thermal and mechanical coupling effect[D]. Xuzhou:China University of Mining and Technology,2021.

[29] SUN Qiang,LÜ Chao,CAO Liwen,et al. Thermal properties of sandstone after treatment at high temperature[J]. International Journal of Rock Mechanics and Mining Sciences,2016,85:60−66.

[30] 康毅力,陈德飞,李相臣,等. 煤层气钻采工作液对煤岩储层应力敏感性影响试验[J]. 煤田地质与勘探,2014,42(4):39−43.

KANG Yili,CHEN Defei,LI Xiangchen,et al. Influence of dvilling fluid on stress sensitivity of coalbed reservoir[J]. Coal Geology & Exploration,2014,42(4):39−43.

[31] 侯晨亮. 高挥发分烟煤微观变形及物性差异成因机制研究[D]. 徐州:中国矿业大学,2023.

HOU Chenliang. Study on the formation mechanism of micro-deformation and physical property difference in high-volatile bituminous coal[D]. Xuzhou:China University of Mining and Technology,2023.

[32] SHI Qingmin,KOU Bingyang,SUN Qiang,et al. Experimental study on pore structure evolution of high volatile bituminous coal with thermal treatment[J]. Case Studies in Thermal Engineering,2022,32:101862.

[33] 张旭辉,陈赞歌,吴鹏,等. 基于失重曲线的煤颗粒热解传热传质计算[J]. 洁净煤技术,2017,23(6):42−46.

ZHANG Xuhui,CHEN Zange,WU Peng,et al. Heat and mass transfer of coal particles pyrolysis based on weight loss curve[J]. Clean Coal Technology,2017,23(6):42−46.

[34] BADZIOCH S,HAWKSLEY P G W. Kinetics of thermal decomposition of pulverized coal particles[J]. Industrial & Engineering Chemistry Process Design and Development,1970,9(4):521−530.

[35] 姚昭章. 炼焦学[M]. 北京:冶金工业出版社,1983.

[36] 韦自健,盛家平,张潇. 中—低成熟度页岩油原位转化对储集层的改造能力[J]. 新疆石油地质,2023,44(4):485−496.

WEI Zijian,SHENG Jiaping,ZHANG Xiao. Stimulation capability of low-medium maturity shale oil reservoir during in-situ conversion[J]. Xinjiang Petroleum Geology,2023,44(4):485−496.

[37] 孙友宏,郭威,邓孙华. 油页岩地下原位转化与钻采技术现状及发展趋势[J]. 钻探工程,2021,48(1):57−67.

SUN Youhong,GUO Wei,DENG Sunhua. The status and development trend of in-situ conversion and drilling exploitation technology for oil shale[J]. Drilling Engineering,2021,48(1):57−67.

[38] 黄旭东. 油页岩原位注蒸气开采高效对流加热机理及应用研究[D]. 太原:太原理工大学,2023.

HUANG Xudong. Study on efficient convection heating mechanism and application of in-situ steam injection for oil shale exploitation[D]. Taiyuan:Taiyuan University of Technology,2023.

[39] 刘德勋,王红岩,郑德温,等. 世界油页岩原位开采技术进展[J]. 天然气工业,2009,29(5):128−132.

LIU Dexun,WANG Hongyan,ZHENG Dewen,et al. World progress of oil shale in-situ exploitation methods[J]. Natural Gas Industry,2009,29(5):128−132.

[40] KANG Zhiqin,ZHAO Yangsheng,YANG Dong,et al. A pilot investigation of pyrolysis from oil and gas extraction from oil shale by in-situ superheated steam injection[J]. Journal of Petroleum Science and Engineering,2020,186:106785.

[41] 赵阳升,冯增朝,杨栋,等. 对流加热油页岩开采油气的方法:CN1676870B[P]. 2010-05-05.

[42] 王海柱,李根生,刘欣,等. 油页岩开发研究现状及发展趋势[J]. 中国基础科学,2020,22(5):1−8.

WANG Haizhu,LI Gensheng,LIU Xin,et al. Research status and development trend of oil shale development[J]. China Basic Science,2020,22(5):1−8.

[43] 张彦军,郑闰,张超凡,等. 煤炭微波热解技术研究进展[J]. 煤炭科学技术,2017,45(12):205−211.

ZHANG Yanjun,ZHENG Run,ZHANG Chaofan,et al. A review of microwave pyrolysis technology of coal[J]. Coal Science and Technology,2017,45(12):205−211.

[44] WANG Zhengxu,GAO Deli. A simulation study on the high-frequency electromagnetic heating heavy oil reservoir and analysis of influencing factors[J]. Arabian Journal for Science and Engineering,2019,44(12):10547−10559.

[45] JU Yang,ZHU Yan,ZHANG Yuwei,et al. Microwave-aided pyrolysis and fragmentation of tar-rich coal and rocks for in-situ coal conversion and clean utilization[J]. International Journal of Rock Mechanics and Mining Sciences,2023,167:105391.

[46] 张彦军. 低阶煤对微波的介电响应及其微波热解特性研究[D]. 北京:中国矿业大学(北京),2018.

ZHANG Yanjun. Microwave dielectric response and microwave pyrolysis characteristics of low-rank coal[D]. Beijing:China University of Mining & Technology (Beijing),2018.

[47] 侯浩然. 微波辐射下煤体的热效应及热力学响应特征[D]. 徐州:中国矿业大学,2020.

HOU Haoran. Thermal effect and thermodynamical response of coal under microwave irradiation[D]. Xuzhou:China University of Mining and Technology,2020.

[48] 李年银,王元,陈飞,等. 油页岩原位转化技术发展现状及展望[J]. 特种油气藏,2022,29(3):1−8.

LI Nianyin,WANG Yuan,CHEN Fei,et al. Development status and prospects of in-situ conversion technology in oil shale[J]. Special Oil & Gas Reservoirs,2022,29(3):1−8.

[49] WANG Min,LI Zhongsheng,HUANG Wenbiao,et al. Coal pyrolysis characteristics by TG–MS and its late gas generation potential[J]. Fuel,2015,156:243−253.

[50] SHI Qingmin,KOU Bingyang,WANG Shuangming,et al. Porosity changes in thermally-treated bituminous coal during step-by-step crushing:Implications for closed pore variations with temperature[J]. Natural Resources Research,2023,32(3):1339−1358.

[51] SCACCIA S. TG–FTIR and kinetics of devolatilization of Sulcis coal[J]. Journal of Analytical and Applied Pyrolysis,2013,104:95−102.

[52] 陈兆辉,高士秋,许光文. 煤热解过程分析与工艺调控方法[J]. 化工学报,2017,68(10):3693−3707.

CHEN Zhaohui,GAO Shiqiu,XU Guangwen. Analysis and control methods of coal pyrolysis process[J]. CIESC Journal,2017,68(10):3693−3707.

[53] ZHAO Yunpeng,HU Haoquan,JIN Lijun,et al. Pyrolysis behavior of vitrinite and inertinite from Chinese Pingshuo coal by TG–MS and in a fixed bed reactor[J]. Fuel Processing Technology,2011,92(4):780−786.

[54] YANG Shengqi,XU Peng,RANJITH P G. Damage model of coal under creep and triaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences,2015,80:337−345.

[55] 师庆民,米奕臣,王双明,等. 富油煤热解流体滞留特征及其机制[J]. 煤炭学报,2022,47(3):1329−1337.

SHI Qingmin,MI Yichen,WANG Shuangming,et al. Trap characteristic and mechanism of volatiles during pyrolysis of tar-rich coal[J]. Journal of China Coal Society,2022,47(3):1329−1337.

[56] 孙四清,李文博,张俭,等. 煤矿井下长钻孔分段水力压裂技术研究进展及发展趋势[J]. 煤田地质与勘探,2022,50(8):1−15.

SUN Siqing,LI Wenbo,ZHANG Jian,et al. Research progress and development trend of staged hydraulic fracturing technology in long-borehole underground coal mine[J]. Coal Geology & Exploration,2022,50(8):1−15.

[57] 王永辉,卢拥军,李永平,等. 非常规储层压裂改造技术进展及应用[J]. 石油学报,2012,33(增刊1):149–158.

WANG Yonghui,LU Yongjun,LI Yongping,et al. Progress and application of hydraulic fracturing technology in unconventional reservoir[J]. Acta Petrolei Sinica,2012,33(Sup.1):149–158.

[58] 鲜学福,殷宏,周军平,等. 页岩气藏超临界CO2致裂增渗实验装置研制[J]. 西南石油大学学报(自然科学版),2015,37(3):1−8.

XIAN Xuefu,YIN Hong,ZHOU Junping,et al. A new experimental apparatus for fracturing shale gas reservoir to enhance permeability with supercritical carbon dioxide[J]. Journal of Southwest Petroleum University (Science & Technology Edition),2015,37(3):1−8.

[59] 齐消寒,刘阳,杨雪松,等. 不同预制温度煤岩冻融损伤及渗流特性研究[J]. 矿业科学学报,2023,8(4):474−486.

QI Xiaoghan,LIU Yang,YANG Xuesong,et al. Experimental study on freeze-thaw damage and seepage characteristics of coal rock at different prefabrication temperatures[J]. Journal of Mining Science and Technology,2023,8(4):474−486.

[60] 秦勇,李恒乐,张永民,等. 基于地质–工程条件约束的可控冲击波煤层致裂行为数值分析[J]. 煤田地质与勘探,2021,49(1):108−118.

QIN Yong,LI Hengle,ZHANG Yongmin,et al. Numerical analysis on CSW fracturing behavior of coal seam under constraint of geological and engineering conditions[J]. Coal Geology & Exploration,2021,49(1):108−118.

[61] SUN Shaoyan,XU Donghai,WEI Ya,et al. Influence laws of operating parameters on coal pyrolysis characteristics[J]. Journal of Analytical and Applied Pyrolysis,2022,167:105684.

[62] 胡庆明. 辽河油田注氮气开采技术研究[D]. 大庆:大庆石油学院,2008.

HU Qingming. Technical research on Liaohe oil field nitrogen injection production[D]. Daqing:Daqing Petroleum Institute,2008.

[63] 卢翔,李宇,马帅,等. 利用显热对熔渣进行直接改质的热平衡分析及试验验证[J]. 工程科学学报,2016,38(10):1386−1392.

LU Xiang,LI Yu,MA Shuai,et al. Thermal equilibrium analysis and experiment of molten slag modification by use of its sensible heat[J]. Chinese Journal of Engineering,2016,38(10):1386−1392.

[64] 张淋. 氮气及甲醇–氮气气氛下红河褐煤热解研究[D]. 大连:大连理工大学,2012.

ZHANG Lin. Studying the pyrolysis of Honghe lignite under nitrogen and methanol-nitrogen atmosphere[D]. Dalian:Dalian University of Technology,2012.

[65] 陈皓侃,李保庆,张碧江. 反应条件对煤加氢热解产物分布的影响[J]. 燃料化学学报,1997,25(1):49−54.

CHEN Haokan,LI Baoqing,ZHANG Bijiang. Effects of reaction parameters on product yields during coal hydropyrolysis[J]. Journal of Fuel Chemistry and Technology,1997,25(1):49−54.

[66] 常慧. 预处理对低变质煤热解特性影响的研究[D]. 西安:西北大学,2019.

CHANG Hui. Study on the pyrolysis characteristic of low rank coals with pretreatments[D]. Xi’an:Northwest University,2019.

[67] YU Y J,LIANG W G,BI J L,et al. Thermophysical experiment and numerical simulation of thermal cracking and heat transfer for oil shale[C]//13th ISRM International Congress of Rock Mechanics. Montreal,2015.

[68] 付德亮,段中会,杨甫,等. 富油煤钻井式地下原位热解提取煤基油气资源的几个关键问题[J]. 煤炭学报,2023,48(4):1759−1772.

FU Deliang,DUAN Zhonghui,YANG Fu,et al. Key problems in in-situ pyrolysis of tar-rich coal drilling for extraction of coal-based oil and gas resources[J]. Journal of China Coal Society,2023,48(4):1759−1772.

[69] 柴世超,王迪,王欣然. 井筒隔热油管技术在渤海高含蜡B油田的应用[J]. 天津科技,2024,51(2):88−90.

CHAI Shichao,WANG Di,WANG Xinran. Application of wellbore insulated tubing technique in Bohai high waxy oilfield B[J]. Tianjin Science & Technology,2024,51(2):88−90.

[70] 张壮壮. 低变质烟煤热解挥发分的催化改质过程研究[D]. 西安:西北大学,2019.

ZHANG Zhuangzhuang. Study on catalytic upgrading process of pyrolysis volatiles from low rank bituminous coal[D]. Xi’an:Northwest University,2019.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.