•  
  •  
 

Coal Geology & Exploration

Authors

HUANG Pengcheng, Institute of Geological Survey, China University of Geosciences, Wuhan 430074, China; Ningxia Hui Autonomous Region Bureau of Coal Geology, Yinchuan 750002, China; Ningxia Unconventional Natural Gas Exploration and Development Innovation Team, Yinchuan 750002, ChinaFollow
GUO Weiyong, Ningxia Hui Autonomous Region Bureau of Coal Geology, Yinchuan 750002, China
JI Xiaoyan, Ningxia Hui Autonomous Region Bureau of Coal Geology, Yinchuan 750002, China; Ningxia Unconventional Natural Gas Exploration and Development Innovation Team, Yinchuan 750002, China
CAI Feifei, Institute of Geological Survey, China University of Geosciences, Wuhan 430074, China; Ningxia Hui Autonomous Region Bureau of Coal Geology, Yinchuan 750002, China
ZHANG Zhifeng, Institute of Geological Survey, China University of Geosciences, Wuhan 430074, China; Ningxia Hui Autonomous Region Bureau of Coal Geology, Yinchuan 750002, China; Ningxia Unconventional Natural Gas Exploration and Development Innovation Team, Yinchuan 750002, China
HUANG Kang, Institute of Geological Survey, China University of Geosciences, Wuhan 430074, China; Ningxia Hui Autonomous Region Bureau of Coal Geology, Yinchuan 750002, China; Ningxia Unconventional Natural Gas Exploration and Development Innovation Team, Yinchuan 750002, China
CHENG Yunqiang, Ningxia Hui Autonomous Region Bureau of Coal Geology, Yinchuan 750002, China
LIU Zheng, Ningxia Hui Autonomous Region Bureau of Coal Geology, Yinchuan 750002, China
WANG Bei, Ningxia Hui Autonomous Region Bureau of Coal Geology, Yinchuan 750002, China; Ningxia Unconventional Natural Gas Exploration and Development Innovation Team, Yinchuan 750002, China
CHEN Rong, Ningxia Hui Autonomous Region Bureau of Coal Geology, Yinchuan 750002, China; Ningxia Unconventional Natural Gas Exploration and Development Innovation Team, Yinchuan 750002, China
SHI Qingmin, College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, ChinaFollow

Abstract

Objective The Ningdong Coalfield of the Ordos Basin boasts abundant tar-rich coal resources, of which tar-rich coals in the Carboniferous-Permian coal seams exhibit unique occurrence characteristics due to differences in thermal evolution and sedimentary environments. Methods This study analyzed the occurrence characteristics and critical material composition of tar-rich coals in the Hongdunzi and Siguquan mining areas. Based on this, it explored the controlling effects of the degree of coalification and sedimentary environment on the tar yield. Results and Conclusions The results indicate that the Carboniferous-Permian coal seams in the Ningdong Coalfield exhibit average tar yields ranging from 7.15% to 11.07%, which generally vary in different zones, different coal seams, and even different parts of the same coal seam. The degree of coalification is identified as a core geologic factor controlling the occurrence of tar-rich coals in the study area. With an increase in the degree of coalification, the tar yield trended upward initially and then downward, peaking at Cdaf=84%. Under the action of coalification, a similar evolutionary trend can be observed between the H/C and O/C ratios and the tar yield. Meanwhile, there were significant positive correlations between active components (i.e., vitrinite and exinite) and the tar yield merely under Cdaf <84%. Coal-forming parent materials, climatic conditions, and paleosalinity of water bodies exert minor impacts on the tar yield. In contrast, the reducibility and hydrodynamic conditions of water bodies indirectly affect the discreteness of the tar yield of coals at the same ranks. The vitrinite/inertinite ratio (V/I), gelification index (GI), ash composition index (K), U/Th ratio, and δU values indicate that coal-forming environment features deep water, occlusion, moisture, strong reducibility, and small quantities of woody tissues, which are conducive to the formation of tar-rich coals with a high tar yield. In contrast, indices such as ash yield and SiO2+Al2O3 indicate strong hydrodynamic conditions and substantial quantities of terrigenous clast inputs, which are unfavorable for the formation of tar-rich coals with a high tar yield.

Keywords

tar-rich coal, tar yield, coalification degree, coal-forming environment, Carboniferous-Permian, Ningdong Coalfield

DOI

10.12363/issn.1001-1986.24.02.0106

Reference

[1] 王双明,王虹,任世华,等. 西部地区富油煤开发利用潜力分析和技术体系构想[J]. 中国工程科学,2022,24(3):49−57.

WANG Shuangming,WANG Hong,REN Shihua,et al. Potential analysis and technical conception of exploitation and utilization of tar-rich coal in western China[J]. Strategic Study of CAE,2022,24(3):49−57.

[2] 师庆民,王双明,王生全,等. 神府南部延安组富油煤多源判识规律[J]. 煤炭学报,2022,47(5):2057−2066.

SHI Qingmin,WANG Shuangming,WANG Shengquan,et al. Multi-source identification and internal relationship of tar-rich coal of the Yan’an Formation in the south of Shenfu[J]. Journal of China Coal Society,2022,47(5):2057−2066.

[3] 马丽,拓宝生. 陕西富油煤资源量居全国之首榆林可“再造一个大庆油田”[J]. 陕西煤炭,2020,39(1):220.

MA Li, TUO Baosheng. Shaanxi has the largest amount of oil–rich coal resources in the country. Yulin can “recreate a Daqing oilfield”[J]. Shaanxi Coal,2020,39(1):220.

[4] 杨甫,段中会,马丽,等. 陕西省富油煤分布及受控地质因素[J]. 煤炭科学技术,2023,51(3):171−181.

YANG Fu,DUAN Zhonghui,MA Li,et al. Distribution and controlled geological factors of oil-rich coal in Shaanxi Province[J]. Coal Science and Technology,2023,51(3):171−181.

[5] 支东明,李建忠,周志超,等. 三塘湖盆地油气勘探开发新领域、新类型及资源潜力[J]. 石油学报,2024,45(1):115−132.

ZHI Dongming,LI Jianzhong,ZHOU Zhichao,et al. New fields,new types and resource potentials of oil-gas exploration and development in Santanghu Basin[J]. Acta Petrolei Sinica,2024,45(1):115−132.

[6] 惠一凡,赵习民,冯烁,等. 新疆三塘湖盆地富油煤赋存特征及主控因素[J]. 煤炭技术,2023,42(8):117−123.

HUI Yifan,ZHAO Ximin,FENG Shuo,et al. Occurrence characteristics and main controlling factors of tar-rich coals in santanghu basin,Xinjiang[J]. Coal Technology,2023,42(8):117−123.

[7] 谢青,李宁,姚征,等. 黄陵矿区富油煤焦油产率特征及主控地质因素分析[J]. 中国煤炭,2020,46(11):83−90.

XIE Qing,LI Ning,YAO Zheng,et al. Research on the tar yield characteristics and main control factors of tar-rich coal in Huangling mining area[J]. China Coal,2020,46(11):83−90.

[8] 王锐,夏玉成,马丽. 榆神矿区富油煤赋存特征及其沉积环境研究[J]. 煤炭科学技术,2020,48(12):192−197.

WANG Rui,XIA Yucheng,MA Li. Study on oil-rich coal occurrence characteristics and sedimentary environment in Yushen Mining Area[J]. Coal Science and Technology,2020,48(12):192−197.

[9] 张宁,许云,乔军伟,等. 陕北侏罗纪富油煤有机地球化学特征[J]. 煤田地质与勘探,2021,49(3):42−49.

ZHANG Ning,XU Yun,QIAO Junwei,et al. Organic geochemistry of the Jurassic tar-rich coal in Northern Shaanxi Province[J]. Coal Geology & Exploration,2021,49(3):42−49.

[10] 许婷,李宁,姚征,等. 陕北榆神矿区富油煤分布规律及形成控制因素[J]. 煤炭科学技术,2022,50(3):161−168.

XU Ting,LI Ning,YAO Zheng,et al. Distribution and geological controls of tar-rich coals in Yushen Mining Area of Northern Shaanxi[J]. Coal Science and Technology,2022,50(3):161−168.

[11] 宁树正,张莉,徐小涛,等. 新疆北部早、中侏罗世富油煤分布规律及控制因素[J]. 煤炭科学技术,2024,52(1):244−254.

NING Shuzheng,ZHANG Li,XU Xiaotao,et al. Distribution of early and Middle Jurassic tar-rich coal and its geological controls in northern Xinjiang[J]. Coal Science and Technology,2024,52(1):244−254.

[12] 刘宁宁. 煤热演化模拟过程中微量元素赋存特征及迁移规律[D]. 徐州:中国矿业大学,2022.

LIU Ningning. Occurrence characteristics and migration of trace elements in coal thermal evolution simulation[D]. Xuzhou:China University of Mining and Technology,2022.

[13] 许睿,夏炎,祁风华,等. 宁东煤田二叠纪煤岩煤质特征及清洁利用研究[J]. 中国煤炭,2024,50(3):124−132.

XU Rui,XIA Yan,QI Fenghua,et al. Research on the coal rock and coal quality characteristics and clean utilization of Permian coal in Ningdong Coalfield[J]. China Coal,2024,50(3):124−132.

[14] 刘亢. 鄂尔多斯盆地西缘煤系矿产资源共生组合特征研究[D]. 北京:中国矿业大学(北京),2016.

LIU Kang. Combination characters of coal series mineral resources in the west margin of Ordos Basin[D]. Beijing:China University of Mining & Technology (Beijing),2016.

[15] QUEROL X,WHATELEY M K G,FERNÁNDEZ-TURIEL J L,et al. Geological controls on the mineralogy and geochemistry of the Beypazari lignite,central Anatolia,Turkey[J]. International Journal of Coal Geology,1997,33(3):255−271.

[16] 毛婉慧,庄新国,周继兵,等. 煤相参数在煤层层序划分中的应用:以新疆准东煤田帐南西矿区为例[J]. 煤田地质与勘探,2011,39(1):6−10.

MAO Wanhui,ZHUANG Xinguo,ZHOU Jibing,et al. Application of coal facies parameters in sequence stratigraphic division of coal seams:With Zhangnanxi coal district,Junggar basin as example[J]. Coal Geology & Exploration,2011,39(1):6−10.

[17] 钟宁宁,陈恭洋. 中国主要煤系倾气倾油性主控因素[J]. 石油勘探与开发,2009,36(3):331−338.

ZHONG Ningning,CHEN Gongyang. Key controls of the gas and oil preferences of China’s major coal-bearing sequences[J]. Petroleum Exploration and Development,2009,36(3):331−338.

[18] 郭春清. 形成煤成油田的制约条件[J]. 石油勘探与开发,2005,32(5):69−73.

GUO Chunqing. Key Formation conditions of coal-derived oilfields[J]. Petroleum Exploration and Development,2005,32(5):69−73.

[19] 姚征,罗乾周,李宁,等. 陕北石炭–二叠纪富油煤赋存特征及影响因素[J]. 煤田地质与勘探,2021,49(3):50−61.

YAO Zheng,LUO Qianzhou,LI Ning,et al. Occurrence characteristics of Carboniferous-Permian tar-rich coal and its influencing factors in Northern Shaanxi[J]. Coal Geology & Exploration,2021,49(3):50−61.

[20] 虞继舜. 煤化学[M]. 北京:冶金工业出版社,2000.

[21] 王飞宇,傅家谟,刘德汉. 煤和陆源有机质生油岩有机岩石学特点及评价[J]. 石油勘探与开发,1994,21(4):30−35.

WANG Feiyu,FU Jiamo,LIU Dehan. Organic petrological characteristics of coal and terrestrical organic matter and their assessment as a oil source rock[J]. Petroleum Exploration and Development,1994,21(4):30−35.

[22] 乔军伟,董伸培,苏刚,等. 陕北曹家滩矿井富油煤地球化学特征及其沉积环境[J]. 西安科技大学学报,2024,44(2):289−300.

QIAO Junwei,DONG Shenpei,SU Gang,et al. Geochemical characteristics and sedimentary environment of tar-rich coal in Caojiatan Mine,Northern Shaanxi[J]. Journal of Xi’an University of Science and Technology,2024,44(2):289−300.

[23] 黄鹏程,王力圆,王贝,等. 宁夏红墩子矿区富油煤赋存特征及其沉积环境研究[J]. 中国煤炭地质,2021,33(10):65−70.

HUANG Pengcheng,WANG Liyuan,WANG Bei,et al. Study on oil-rich coal occurrence characteristics and sedimentary environment in Hongdunzi Mining Area,Ningxia[J]. Coal Geology of China,2021,33(10):65−70.

[24] 申家年,杨久莹,周放,等. 基于有机元素的干酪根类型指数计算[J]. 东北石油大学学报,2013,37(5):24−31.

SHEN Jianian,YANG Jiuying,ZHOU Fang,et al. Study of kerogen type index through the calculation of organic elements[J]. Journal of Northeast Petroleum University,2013,37(5):24−31.

[25] 代世峰,任德贻,唐跃刚. 煤中常量元素的赋存特征与研究意义[J]. 煤田地质与勘探,2005,33(2):1−5.

DAI Shifeng,REN Deyi,TANG Yuegang. Modes of occurrence of major elements in coal and their study significance[J]. Coal Geology & Exploration,2005,33(2):1−5.

[26] 刘瑞. 煤中微量元素在成煤环境分析中的应用[D]. 淮南:安徽理工大学,2018.

LIU Rui. Application of trace elements in coal analysis of coal-forming environment[D]. Huainan:Anhui University of Science & Technology,2018.

[27] 范萌萌,卜军,袁珍,等. 鄂尔多斯盆地中东部延安组古环境恢复[J]. 西安科技大学学报,2023,43(5):912−922.

FAN Mengmeng,BU Jun,YUAN Zhen,et al. Paleoenvironment restoration of Yan’an Formation in the central and eastern part of Ordos Basin[J]. Journal of Xi’an University of Science and Technology,2023,43(5):912−922.

[28] 宋立军,刘池阳,赵红格,等. 鄂尔多斯地区黄旗口组地球化学特征及其沉积环境与构造背景[J]. 地球科学,2016,41(8):1295−1308.

SONG Lijun,LIU Chiyang,ZHAO Hongge,et al. Geochemical characteristics,sedimentary environment and tectonic setting of huangqikou formation,Ordos basin[J]. Earth Science,2016,41(8):1295−1308.

[29] 白坤,马越,贾栋栋,等. 小保当煤矿新近系保德组沉积古环境恢复[J]. 西安科技大学学报,2024,44(2):328−335.

BAI Kun,MA Yue,JIA Dongdong,et al. Restoration of sedimentary paleoenvironment of Neogene Baode Formation in Xiabaodang Coal Mine[J]. Journal of Xi’an University of Science and Technology,2024,44(2):328−335.

[30] 蔡玥,罗旭东,周对对,等. 大佛寺井田洛河组砂岩地球化学特征及其对沉积环境和物源的制约[J]. 西安科技大学学报,2023,43(4):752−760.

CAI Yue,LUO Xudong,ZHOU Duidui,et al. Geochemical characteristics of sandstones in Luohe Formation of Dafosi Wellfield and their constraints on paleoenviornment and provenance[J]. Journal of Xi’an University of Science and Technology,2023,43(4):752−760.

[31] 刘金,王剑,谭静强,等. 吉木萨尔凹陷芦草沟组沉积古环境与有机质富集[J]. 地质力学学报,2023,29(5):631−647.

LIU Jin,WANG Jian,TAN Jingqiang,et al. Sedimentary paleo-environment and organic matter enrichment in the Lucaogou Formation of the Jimsar Sag[J]. Journal of Geomechanics,2023,29(5):631−647.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.