Coal Geology & Exploration
Abstract
[Objective] CO2 and CH4 are identified as the primary greenhouse gases emitted from energy production in coal-electricity production bases. Mointoring these emissions and analyzing their spatiotemporal distribution are essential components of building a carbon monitoring system in the study area. [Methods] This study investigated Huainan City, Anhui Province as an example to explore the spatiotemporal characteristics of CO2 and CH4 in coal-electricity production bases. Specifically, this study examined the CO2 and CH4 concentrations in the study area based on data from the GOSAT,OCO-2, and Sentinel-5P satellites,determining the column concentration changes and distribution of CO2 and CH4, which are XCO2 and XCH4. A sourcing method of inventory was employed to analyze the industrial and regional CO2 emission characteristics, and Pearson's correlation coefficient and multivariate regression were used to analyze the dominant factors affecting the XCO2 and XCH4 concentrations in the study area. [Results and Conclusions] Key findings are as follows: (1) The analysis of fusion data from the GOSAT and OCO-2 satellites indicate that the XCO2 and XCH4 concentrations in Huainan generally trended upward from 2016 to 2020, with the XCO2 and XCH4 concentrations increasing by 12×10−6 and 23×10−9, respectively. The Pearson's correlation coefficient between the XCO2 concentration and cumulative power generation was 0.98, and that between the XCH4 concentration and cumulative coal production was 0.99, both indicating extremely strong correlations. (2) As revealed by the analytical results of the spatiotemporal distribution characteristics of the XCH4 concentration in various zones of Huainan City derived based on data from the high-resolution Tropospheric Monitoring Instrument (TROPOMI) equipped in the Sentinel-5P satellite, the XCH4 concentration in the city is affected by both energy and agricultural production, being higher in autumn than in summer. (3) The results obtained using the sourcing method of inventory indicate that the maximum CO2 emissions of the primary sources originated from the stationary combustion sources of fossil fuels, accounting for 89.59% of the total CO2 emissions across the city. Furthermore, over 99% of the stationary combustion sources of fossil fuels were used for electric heating. The primary CO2 emissions sources include the coal-fired power plants in Panji District and Fengtai County of Huainan City. Source identification results indicate that the fossil-fired power plants concentrated in the northern Huainan proved to be predominant sources of CO2 emissions in the study area. (4) The dominant factors affecting the XCO2 concentration in the study area include regional GDP, cumulative power generation, and the output of the secondary industries, while those influencing the XCH4 concentration encompass cumulative coal production, the output of the primary industries, and the sown area. The results of this study provide a valuable reference for the construction and improvement of carbon monitoring systems for coal-electricity production bases under the context of reaching the goals of peak carbon dioxide emissions and carbon neutrality.
Keywords
carbon emission, remote sensing monitoring, XCO2, XCH4, dominant controlling factor, multivariate regression analysis, coal-electricity production base, Huainan City, Anhui Province
DOI
10.12363/issn.1001-1986.23.09.0537
Recommended Citation
XU Yanfei, CHEN Yongchun, LI Jing,
et al.
(2024)
"Remote sensing monitoring and spatiotemporal characteristics of CO2 and CH4 concentrations in coal-electricity production bases,"
Coal Geology & Exploration: Vol. 52:
Iss.
6, Article 9.
DOI: 10.12363/issn.1001-1986.23.09.0537
Available at:
https://cge.researchcommons.org/journal/vol52/iss6/9
Reference
[1] 武强,涂坤,曾一凡. “双碳” 目标愿景下我国能源战略形势若干问题思考[J]. 科学通报,2023,68(15):1884−1898.
WU Qiang,TU Kun,ZENG Yifan. Research on China’s energy strategic situation under the carbon peaking and carbon neutrality goals[J]. Chinese Science Bulletin,2023,68(15):1884−1898.
[2] 谢和平,任世华,谢亚辰,等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报,2021,46(7):2197−2211.
XIE Heping,REN Shihua,XIE Yachen,et al. Development opportunities of the coal industry towards the goal of carbon neutrality[J]. Journal of China Coal Society,2021,46(7):2197−2211.
[3] 苏健,梁英波,丁麟,等. 碳中和目标下我国能源发展战略探讨[J]. 中国科学院院刊,2021,36(9):1001−1009.
SU Jian,LIANG Yingbo,DING Lin,et al. Research on China’s energy development strategy under carbon neutrality[J]. Bulletin of Chinese Academy of Sciences,2021,36(9):1001−1009.
[4] 舒印彪. 发展新型电力系统 助力实现“双碳” 目标[J]. 中国电力企业管理,2021(7):8−9.
SHU Yinbiao. Developing new power system to help realize the goal of “double carbon”[J]. China Power Enterprise Management,2021(7):8−9.
[5] 国家统计局. 中华人民共和国2021年国民经济和社会发展统计公报[J]. 中国统计,2022(3):9−26.
National Bureau of Statistics of China. Statistical communiqué of the People’s Republic of China (PRC) on the 2021 national economic and social development[J]. China Statistics,2022(3):9−26.
[6] 刘毅,王婧,车轲,等. 温室气体的卫星遥感:进展与趋势[J]. 遥感学报,2021,25(1):53−64.
LIU Yi,WANG Jing,CHE Ke,et al. Satellite remote sensing of greenhouse gases:Progress and trends[J]. National Remote Sensing Bulletin,2021,25(1):53−64.
[7] DONG Feng,YU Bolin,HADACHIN T,et al. Drivers of carbon emission intensity change in China[J]. Resources,Conservation and Recycling,2018,129:187−201.
[8] 居为民,田向军,江飞,等. 基于多源卫星遥感的高分辨率全球碳同化系统研究进展[J]. 中国基础科学,2019,21(3):24−27.
JU Weimin,TIAN Xiangjun,JIANG Fei,et al. Achievements of study on the global carbon assimilation system based on multisource remote sensing data[J]. China Basic Science,2019,21(3):24−27.
[9] 周游. 露天煤矿温室气体核算模型构建及减排策略研究[J]. 煤炭工程,2019,51(7):138−141.
ZHOU You. Study on greenhouse gas accounting model and emission reduction strategy for open-pit coal mines[J]. Coal Engineering,2019,51(7):138−141.
[10] 孔潇扬,李琦. 能源碳排放的空间估算研究进展[J]. 测绘科学,2022,47(8):146−156.
KONG Xiaoyang,LI Qi. Research progress of spatial estimation of energy carbon emissions[J]. Science of Surveying and Mapping,2022,47(8):146−156.
[11] 肖钟湧,陈颖锋,林晓凤,等. 基于多源卫星遥感数据的中国2003年—2018年CO2时空变化研究[J]. 遥感学报,2022,26(12):2486−2496.
XIAO Zhongyong,CHEN Yingfeng,LIN Xiaofeng,et al. The temporal and spatial variation of CO2 column concentration over China from 2003 to 2018 based on multi-source satellite remote sensing data[J]. National Remote Sensing Bulletin,2022,26(12):2486−2496.
[12] 宋珺,周蕾,赵盟,等. 2014—2019年京津冀城市群能源碳排放的遥感监测[J]. 浙江师范大学学报(自然科学版),2021,44(4):467−474.
SONG Jun,ZHOU Lei,ZHAO Meng,et al. Remote sensing monitoring of energy carbon emissions in the Beijing-Tianjin-Hebei urban agglomeration from 2014 to 2019[J]. Journal of Zhejiang Normal University (Natural Sciences),2021,44(4):467−474.
[13] 刘良云,陈良富,刘毅,等. 全球碳盘点卫星遥感监测方法、进展与挑战[J]. 遥感学报,2022,26(2):243−267.
LIU Liangyun,CHEN Liangfu,LIU Yi,et al. Satellite remote sensing for global stocktaking:Methods,progress and perspectives[J]. National Remote Sensing Bulletin,2022,26(2):243−267.
[14] 张丽丽,赵明伟,赵娜,等. 基于OCO-2卫星观测模拟高精度XCO2的空间分布[J]. 地球信息科学学报,2018,20(9):1316−1326.
ZHANG Lili,ZHAO Mingwei,ZHAO Na,et al. Modeling the spatial distribution of XCO2 with high accuracy based on OCO-2’s observations[J]. Journal of Geo-Information Science,2018,20(9):1316−1326.
[15] 居为民,方红亮,田向军,等. 基于多源卫星遥感的高分辨率全球碳同化系统研究[J]. 地球科学进展,2016,31(11):1105−1110.
JU Weimin,FANG Hongliang,TIAN Xiangjun,et al. Study on the global carbon assimilation system based on multisource remote sensing data[J]. Advances in Earth Science,2016,31(11):1105−1110.
[16] IPCC. Summary for Policymakers[M]//IPCC-Climate Change 2021:the Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge:Cambridge University Press,2021.
[17] PIERRE F,JONES MATTHEW W,MICHAEL O,et al. Global carbon budget 2021[J]. Earth System Science Data,2022,14(4):1917−2005.
[18] 何江浩,蔡玉林,秦鹏. 二氧化碳的时空变化规律与影响因素分析[J]. 科学通报,2020,65(增刊1):194−202.
HE Jianghao,CAI Yulin,QIN Peng. Spatial and temporal variations of carbon dioxide and its influencing factors[J]. Chinese Science Bulletin,2020,65(Sup.1):194−202.
[19] 于贵瑞,郝天象,朱剑兴. 中国碳达峰、碳中和行动方略之探讨[J]. 中国科学院院刊,2022,37(4):423−434.
YU Guirui,HAO Tianxiang,ZHU Jianxing. Discussion on action strategies of China’s carbon peak and carbon neutrality[J]. Bulletin of Chinese Academy of Sciences,2022,37(4):423−434.
[20] 秦凯,何秦,康涵书,等. 煤炭行业甲烷排放卫星遥感研究进展与展望[J]. 光学学报,2023,43(18):118−130.
QIN Kai,HE Qin,KANG Hanshu,et al. Progress and prospect of satellite remote sensing research applied to methane emissions from the coal industry[J]. Acta Optica Sinica,2023,43(18):118−130.
[21] 梁顺林. 中国定量遥感发展的一些思考[J]. 遥感学报,2021,25(9):1889−1895.
LIANG Shunlin. Some thoughts on the development of quantitative remote sensing in China[J]. National Remote Sensing Bulletin,2021,25(9):1889−1895.
[22] 布然,雷莉萍,郭丽洁,等. 大气CO2浓度时空变化卫星遥感监测的应用潜力分析[J]. 遥感学报,2015,19(1):34−45.
BU Ran,LEI Liping,GUO Lijie,et al. Temporal and spatial potential applications of satellite remote sensing of atmospheric CO2 concentration monitoring[J]. Journal of Remote Sensing,2015,19(1):34−45.
[23] 梁顺林,白瑞,陈晓娜,等. 2019年中国陆表定量遥感发展综述[J]. 遥感学报,2020,24(6):618−671.
LIANG Shunlin,BAI Rui,CHEN Xiaona,et al. Review of China’s land surface quantitative remote sensing development in 2019[J]. Journal of Remote Sensing,2020,24(6):618−671.
[24] 孟倩文,尹球. 中国区域CO2多年时空变化的卫星遥感分析[J]. 遥感技术与应用,2016,31(2):203−213.
MENG Qianwen,YIN Qiu. Remote sensing analysis of Multi-years spatial and temporal variation of CO2 in China[J]. Remote Sensing Technology and Application,2016,31(2):203−213.
[25] BIE Nian,LEI Liping,ZENG Zhaocheng,et al. Regional uncertainty of GOSAT XCO2 retrievals in China:Quantification and attribution[J]. Atmospheric Measurement Techniques,2018,11(3):1251−1272.
[26] WANG J S,KAWA S R,COLLATZ G J,et al. A global synthesis inversion analysis of recent variability in CO2 fluxes using GOSAT and in situ observations[J]. Atmospheric Chemistry and Physics,2018,18(15):11097−11124.
[27] YOSHIDA Y,KIKUCHI N,MORINO I,et al. Improvement of the retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data[J]. Atmospheric Measurement Techniques,2013,6(6):1533−1547.
[28] YOKOTA T,YOSHIDA Y,EGUCHI N,et al. Global concentrations of CO2 and CH4 retrieved from GOSAT:First preliminary results[J]. SOLA,2009,5:160−163.
[29] ZHOU Minqiang,NI Qichen,CAI Zhaonan,et al. Ground-based atmospheric CO2,CH4,and CO column measurements at Golmud in the Qinghai-Tibetan Plateau and comparisons with TROPOMI/S5P satellite observations[J]. Advances in Atmospheric Sciences,2023,40(2):223−234.
[30] SHENG Mengya,LEI Liping,ZENG Zhaocheng,et al. Global land 1° mapping dataset of XCO2 from satellite observations of GOSAT and OCO-2 from 2009 to 2020[J]. Big Earth Data,2023,7(1):170−190.
[31] SHENG Mengya,LEI Liping,ZENG Zhaocheng,et al. Detecting the responses of CO2 column abundances to anthropogenic emissions from satellite observations of GOSAT and OCO-2[J]. Remote Sensing,2021,13(17):3524.
[32] LIANG Ailin,GONG Wei,HAN Ge,et al. Comparison of satellite-observed XCO2 from GOSAT,OCO-2,and ground-based TCCON[J]. Remote Sensing,2017,9(10):1033.
[33] HU Haili,HASEKAMP O,BUTZ A,et al. The operational methane retrieval algorithm for TROPOMI[J]. Atmospheric Measurement Techniques,2016,9(11):5423−5440.
[34] 雷莉萍,钟惠,贺忠华,等. 人为排放所引起大气CO2浓度变化的卫星遥感观测评估[J]. 科学通报,2017,62(25):2941−2950.
LEI Liping,ZHONG Hui,HE Zhonghua,et al. Assessment of atmospheric CO2 concentration enhancement from anthropogenic emissions based on satellite observations[J]. Chinese Science Bulletin,2017,62(25):2941−2950.
[35] 张蕾,夏志业,李语诗. 多源碳卫星近地面XCO2及人为CO2排放量特征分析[J]. 环境科学与技术,2023,46(2):141−151.
ZHANG Lei,XIA Zhiye,LI Yushi. Characteristic analysis of near-ground XCO2 and anthropogenic CO2 emissions from multi-source carbon satellites[J]. Environmental Science & Technology,2023,46(2):141−151.
[36] SHA M K,DE MAZIÈRE M,NOTHOLT J,et al. Intercomparison of low- and high-resolution infrared spectrometers for ground-based solar remote sensing measurements of total column concentrations of CO2,CH4,and CO[J]. Atmospheric Measurement Techniques,2020,13(9):4791−4839.
[37] 周言安,杨洋. “双碳” 目标下我国煤矿瓦斯利用技术发展方向[J]. 煤炭技术,2022,41(8):146−149.
ZHOU Yan’an,YANG Yang. Development direction of coal mine gas utilization technology to realize carbon peak and carbon neutrality in China[J]. Coal Technology,2022,41(8):146−149.
[38] 田婷,张青,蒋华伟,等. 水稻植株对稻田甲烷排放影响的研究进展[J]. 江苏农业科学,2017,45(20):28−31.
TIAN Ting,ZHANG Qing,JIANG Huawei,et al. Research progress on the effect of rice plants on methane emission from paddy fields[J]. Jiangsu Agricultural Sciences,2017,45(20):28−31.
[39] 江瑜,管大海,张卫建. 水稻植株特性对稻田甲烷排放的影响及其机制的研究进展[J]. 中国生态农业学报,2018,26(2):175−181.
JIANG Yu,GUAN Dahai,ZHANG Weijian. The effect of rice plant traits on methane emissions from paddy fields:A review[J]. Chinese Journal of Eco-Agriculture,2018,26(2):175−181.
[40] 费坤,汪甜甜,张天恩,等. 淮南市耕地质量等级空间分布特征及影响因子研究[J]. 环境监测管理与技术,2022,34(6):14−20.
FEI Kun,WANG Tiantian,ZHANG Tian’en,et al. Study on spatial distribution characteristics and influencing factors of cultivated land quality grade in Huainan[J]. The Administration and Technique of Environmental Monitoring,2022,34(6):14−20.
[41] 刘艳秋,秦凯,COHEN Blake Jason,等. 基于涡动及走航观测的晋东南煤矿区甲烷分布特征[J]. 煤炭学报,2022,47(12):4395−4402.
LIU Yanqiu,QIN Kai,COHEN B J,et al. Analysis of the characteristics of methane in the coal mining area of southeastern Shanxi with eddy and mobile observation[J]. Journal of China Coal Society,2022,47(12):4395−4402.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons