Coal Geology & Exploration
Abstract
[Objective] Accurate prediction parameters for mining subsidence are important basis for full cycle green coal mining, while inversion based on the subsidence data of observation lines serves as the main method to obtain these parameters. [Methods] To quantitatively analyze the impacts of the observation line layout morphology and survey point missing on the inversion of prediction parameters for mining subsidence, this study developed a probability integral model-based inversion method for these parameters using the chimpanzee optimization algorithm (ChOA). Using this method combined with digital simulation experiments, this study predicted subsidence parameters under six observation line morphologies and survey point missing in three different areas: the maximum subsidence area, the boundary area, and the inflection point area. Furthermore, this study revealed mechanisms for the impacts of these observation line morphologies and survey point missing on the parameter inversion results. [Results and Conclusions] The results indicate that the inversion using ChOA yielded accurate subsidence prediction parameters, with the mean square errors of subsidence coefficient q, influence angle tangent tanβ, mining influence propagation angle θ0, and average inflection point offset s0 being below 0.01, below 0.04, about 1.0, and above 10 m respectively. The changes in the observation line layout morphology produced minor impacts on θ0 but greatly influenced q, tanβ, and s0. In the case of non-standard observation line morphologies, relying solely on the parameter inversion method may lead to the distortion of inversion results. In the case of the insufficient mining of a mining face, the survey point missing in the maximum subsidence area had slight effects on tanβ and θ0. However, with an increase in the number of missing survey points in the maximum subsidence area, information on the maximum subsidence gradually shrank, which led to gradually decreasing q and s0. The survey point missing in the boundary area had small impacts on parameter inversion results but influenced the determination of the movement range of subsided basins, along with angular parameters such as boundary and movement angles. In the case where missing survey points in the inflection point area accounted for less than 40%, the survey point missing posed minor impacts on the parameter inversion. Otherwise, with an increase in the number of missing survey points, the subsidence curve morphology was out of control, q and s0 gradually decreased, while tanβ gradually increased. Given the strong correlations among these parameters, when the minimum sum of squares of prediction residuals acts as the criterion for the fitness function, it is feasible to reduce the impacts of changes in the observation line layout morphology or survey point missing on the parameter inversion results by narrowing the parameter optimization ranges and using interpolation.
Keywords
mining subsidence, parameter inversion, probability integral model, observation line characteristic, chimpanzee optimization algorithm
DOI
10.12363/issn.1001-1986.24.04.0229
Recommended Citation
GUO Qingbiao, YU Qing, ZHENG Meinan,
et al.
(2024)
"Impacts of observation line layout morphology and survey point missing on the inversion of predicted parameters of mining subsidence,"
Coal Geology & Exploration: Vol. 52:
Iss.
6, Article 7.
DOI: 10.12363/issn.1001-1986.24.04.0229
Available at:
https://cge.researchcommons.org/journal/vol52/iss6/7
Reference
[1] 王佟,张博,王庆伟,等. 中国绿色煤炭资源概念和内涵及评价[J]. 煤田地质与勘探,2017,45(1):1−8.
WANG Tong,ZHANG Bo,WANG Qingwei,et al. Green coal resources in China:Concept,characteristics and assessment[J]. Coal Geology & Exploration,2017,45(1):1−8.
[2] 王双明,申艳军,宋世杰,等. “双碳” 目标下煤炭能源地位变化与绿色低碳开发[J]. 煤炭学报,2023,48(7):2599−2612.
WANG Shuangming,SHEN Yanjun,SONG Shijie,et al. Change of coal energy status and green and low-carbon development under the "dual carbon" goal[J]. Journal of China Coal Society,2023,48(7):2599−2612.
[3] 李凤明,丁鑫品,孙家恺. 我国采煤沉陷区生态环境现状与治理技术发展趋势[J]. 煤矿安全,2021,52(11):232−239.
LI Fengming,DING Xinpin,SUN Jiakai. Ecological environment status and development trend of governance technology of coal mining subsidence area in China[J]. Safety in Coal Mines,2021,52(11):232−239.
[4] 李永金,龙军. 四川省采煤沉陷区综合治理探讨[J]. 中国煤炭,2020,46(10):75−80.
LI Yongjin,LONG Jun. Discussion on comprehensive treatment of coal mining subsidence area in Sichuan Province[J]. China Coal,2020,46(10):75−80.
[5] 李全生. 井工煤矿减损开采理论与技术体系[J]. 煤炭学报,2024,49(2):988−1002.
LI Quansheng. Reduction theory and technical system of underground coal mining[J]. Journal of China Coal Society,2024,49(2):988−1002.
[6] 李全生,李晓斌,许家林,等. 岩层采动裂隙演化规律与生态治理技术研究进展[J]. 煤炭科学技术,2022,50(1):28−47.
LI Quansheng,LI Xiaobin,XU Jialin,et al. Research advances in mining fractures evolution law of rock strata and ecological treatment technology[J]. Coal Science and Technology,2022,50(1):28−47.
[7] 张吉雄,鞠杨,张强,等. 矿山生态环境低损害开采体系与方法[J]. 采矿与岩层控制工程学报,2019,1(2):56−68.
ZHANG Jixiong,JU Yang,ZHANG Qiang,et al. Low ecological environment damage technology and method in coal mines[J]. Journal of Mining and Strata Control Engineering,2019,1(2):56−68.
[8] 李培现,万昊明,许月,等. 基于地表移动矢量的概率积分法参数反演方法[J]. 岩土工程学报,2018,40(4):767−776.
LI Peixian,WAN Haoming,XU Yue,et al. Parameter inversion of probability integration method using surface movement vector[J]. Chinese Journal of Geotechnical Engineering,2018,40(4):767−776.
[9] 崔希民,邓喀中. 煤矿开采沉陷预计理论与方法研究评述[J]. 煤炭科学技术,2017,45(1):160−169.
CUI Ximin,DENG Kazhong. Research review of predicting theory and method for coal mining subsidence[J]. Coal Science and Technology,2017,45(1):160−169.
[10] 陈继清,桂海宁,王志奎,等. 基于特征点法的自适应SLAM改进方法[J]. 广西大学学报(自然科学版),2022,47(6):1611−1625.
CHEN Jiqing,GUI Haining,WANG Zhikui,et al. An improved method of adaptive SLAM based on ORB-SLAM2[J]. Journal of Guangxi University (Natural Science Edition),2022,47(6):1611−1625.
[11] 张衡,程浩忠,曾平良,等. 分位数拟合的点估计法随机潮流在输电网规划中的应用[J]. 电力自动化设备,2018,38(11):43−49.
ZHANG Heng,CHENG Haozhong,ZENG Pingliang,et al. Application of stochastic power flow based on quantile fitting point estimation method in transmission network expansion planning[J]. Electric Power Automation Equipment,2018,38(11):43−49.
[12] 曹净,唐斌懿,李豪. 基于SA-PSO算法优化LS-SVM的基坑土层等效参数反演[J]. 工业安全与环保,2023,49(2):15−20.
CAO Jing,TANG Binyi,LI Hao. Optimization of LS-SVM based on SA-PSO algorithm for inversion of equivalent parameters of foundation soil layers[J]. Industrial Safety and Environmental Protection,2023,49(2):15−20.
[13] 查剑锋,冯文凯,朱晓峻. 基于遗传算法的概率积分法预计参数反演[J]. 采矿与安全工程学报,2011,28(4):655−659.
ZHA Jianfeng,FENG Wenkai,ZHU Xiaojun. Research on parameters inversion in probability integral method by genetic algorithm[J]. Journal of Mining & Safety Engineering,2011,28(4):655−659.
[14] 周棒,康建荣,胡晋山,等. 基于递减步长果蝇算法的概率积分法修正模型反演[J]. 煤炭科学技术,2020,48(增刊1):161−165.
ZHOU Bang,KANG Jianrong,HU Jinshan,et al. Inversion for amended model of probability integral method based on Diminishing Step Fruit Flies Algorithm[J]. Coal Science and Technology,2020,48(Sup.1):161−165.
[15] 郭立,赵尚民. 改进的WOA-BP算法在概率积分法参数预计中的应用[J]. 测绘科学,2023,48(6):131−139.
GUO Li,ZHAO Shangmin. Application of improved WOA-BP algorithm in parameter prediction of probability integral method[J]. Science of Surveying and Mapping,2023,48(6):131−139.
[16] 陈涛,郭广礼,朱晓峻,等. 利用果蝇算法反演概率积分法开采沉陷预计参数[J]. 金属矿山,2016(6):185−188.
CHEN Tao,GUO Guangli,ZHU Xiaojun,et al. Mining subsidence prediction parameters inversion of the probability integral method based on fruit flies algorithm[J]. Metal Mine,2016(6):185−188.
[17] 徐孟强,查剑锋,李怀展. 基于PSO算法的概率积分法预计参数反演[J]. 煤炭工程,2015,47(7):117−119.
XU Mengqiang,ZHA Jianfeng,LI Huaizhan. Parameters inversion in probability integral method by Particle Swarm Optimization[J]. Coal Engineering,2015,47(7):117−119.
[18] 吴侃,郭广礼,何国清,等. 测点缺失对地表移动参数确定的影响[J]. 中国矿业大学学报,1995,24(3):97−102.
WU Kan,GUO Guangli,HE Guoqing,et al. Observation point loss influence on determining parameters of ground movement[J]. Journal of China University of Mining & Technology,1995,24(3):97−102.
[19] KHISHE M,MOSAVI M R. Chimp optimization algorithm[J]. Expert Systems with Applications,2020,149:113338.
[20] 程国森,崔东文. 黑猩猩优化算法−极限学习机模型在富水性分级判定中的应用[J]. 人民黄河,2021,43(7):62−66.
CHENG Guosen,CUI Dongwen. Application of chimp optimization algorithm-extreme learning machine model in judging water abundance grade[J]. Yellow River,2021,43(7):62−66.
[21] KHISHE M,NEZHADSHAHBODAGHI M,MOSAVI M,et al. A weighted chimp optimization algorithm[J]. IEEE Access,2021,9:158508−158539.
[22] BO Qiuyu,CHENG Wuqun,KHISHE M. Evolving chimp optimization algorithm by weighted opposition-based technique and greedy search for multimodal engineering problems[J]. Applied Soft Computing,2023,132:109869.
[23] 徐翀,黄晖. 基于概率积分模型的开采沉陷预计系统设计与实现[J]. 煤田地质与勘探,2012,40(3):59−61.
XU Chong,HUANG Hui. Design and realization of mining subsidence prediction system based on the probability integral model[J]. Coal Geology & Exploration,2012,40(3):59−61.
[24] 郭文兵,邓喀中,邹友峰. 概率积分法预计参数选取的神经网络模型[J]. 中国矿业大学学报,2004,33(3):322−326.
GUO Wenbing,DENG Kazhong,ZOU Youfeng. Artificial neural network model for predicting parameters of probability-integral method[J]. Journal of China University of Mining & Technology,2004,33(3):322−326.
[25] 吴侃,葛家新,周鸣,等. 概率积分法预计模型的某些修正[J]. 煤炭学报,1998,23(1):19−22.
WU Kan,GE Jiaxin,ZHOU Ming,et al. Some modifications of using probability integral method to predicate model[J]. Journal of China Coal Society,1998,23(1):19−22.
[26] 刘钟森,杨辰雨. 改进的概率积分函数模型及曲线拟合求参研究[J]. 煤炭技术,2014,33(10):87−89.
LIU Zhongsen,YANG Chenyu. Research on curve fitting based on improved probability integral function model[J]. Coal Technology,2014,33(10):87−89.
[27] 罗锦,郭庆彪,陈红凯,等. 逆断层下盘开采地表沉陷异常响应实验模拟研究[J]. 地球物理学进展,2022,37(3):1280−1291.
LUO Jin,GUO Qingbiao,CHEN Hongkai,et al. Experimental simulation study on abnormal response of surface subsidence caused by mining in footwall of reverse fault[J]. Progress in Geophysics,2022,37(3):1280−1291.
[28] 王永辉,冯园,李兰兰. 巨厚松散层下开采沉陷岩土体移动变形规律[J]. 成都理工大学学报(自然科学版),2020,47(6):733−741.
WANG Yonghui,FENG Yuan,LI Lanlan. Regularity of movement and deformation of rock and soil mass in mining subsidence under giant thick loose layer[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2020,47(6):733−741.
[29] 谢晓深,侯恩科,王双明,等. 风沙滩地区中深埋厚煤层综采地表移动变形规律实测研究[J]. 煤矿安全,2021,52(12):199−206.
XIE Xiaoshen,HOU Enke,WANG Shuangming,et al. Study on surface movement and deformation law of the middle deep buried thick seam in sandy region[J]. Safety in Coal Mines,2021,52(12):199−206.
[30] 高平,靳志龙,巩泽文. 神东矿区综采工作面地表移动变形规律研究[J]. 中国煤炭,2022,48(增刊1):307−315.
GAO Ping,JIN Zhilong,GONG Zewen. Study on ground surface movement and deformation law of fully mechanized mining face in Shendong mining area[J]. China Coal,2022,48(Sup.1):307−315.
[31] 蒯洋,刘辉,朱晓峻,等. 厚松散层下多煤层重复开采地表移动规律[J]. 煤田地质与勘探,2018,46(2):130−136.
KUAI Yang,LIU Hui,ZHU Xiaojun,et al. Study on surface movement characteristics of repeated mining under thick alluvium[J]. Coal Geology & Exploration,2018,46(2):130−136.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons