Coal Geology & Exploration
Abstract
[Objective] Water inrushes from floors are subjected to the superimposed effects of factors such as specific geological structures, water-rock-stress coupling, and mining disturbance, proving complex, concealed, and abrupt. [Methods] Physical simulation experiments can effectively reproduce the environments of the floors and confined water, intuitively present the whole process of both mining-induced fracture propagation in the floors and the path evolution of water inrushes, and obtain multi-source data of all disaster stages in a real time manner. Therefore, such experiments enjoy unique advantages in investigating water inrushes from floors. [Results and Conclusions] This study reviews the research achievements in water inrushes in terms of classical theories, standards and specifications, simulation experiments, and engineering practice, highlighting three advances in research: experiment loading devices and water pressure simulation methods; the R&D and characteristic indices of similar materials, and monitoring technologies and their observation system design. A breakthrough has been made in capturing the whole-process information of water inrushes from floors using a 3D model under the simulated water-rock-stress coupling environment. In the broad context of research on digital intelligence, this study analyzes the limitations of physical simulation experiments on water inrush from floors. Accordingly, it proposes that future development should focus on the R&D of large-scale, comprehensive 3D experiment platforms for water inrush from floors, the establishment of a standardized database for multi-characteristic proportioning of similar materials, the construction of a multi-phase, multi-field, and multi-dimensional coupling monitoring and early warning system, and the integrated application and research of digital intelligence technologies including artificial intelligence. The insights of this study will assist in improving the level of physical simulation experiments from the aspects of devices, materials, and technologies, thereby supporting the high-quality advancement in fundamental research on the intelligent prevention and control of water hazards from floors in coal mines.
Keywords
water inrush from a coal seam floor, physical simulation, experimental device, similar material, monitoring technology, prospect
DOI
10.12363/issn.1001-1986.24.03.0183
Recommended Citation
Z O.
(2024)
"Physical simulation experiments on mining-induced water inrushes from coal seam floors: Advances in research and prospects,"
Coal Geology & Exploration: Vol. 52:
Iss.
6, Article 6.
DOI: 10.12363/issn.1001-1986.24.03.0183
Available at:
https://cge.researchcommons.org/journal/vol52/iss6/6
Reference
[1] GUI Herong,LIN Manli. Types of water hazards in China coalmines and regional characteristics[J]. Natural Hazards,2016,84:1501−1512.
[2] 董书宁,虎维岳. 中国煤矿水害基本特征及其主要影响因素[J]. 煤田地质与勘探,2007,35(5):34−38.
DONG Shuning,HU Weiyue. Basic characteristics and main controlling factors of coal mine water hazard in China[J]. Coal Geology & Exploration,2007,35(5):34−38.
[3] SUN Wenjie,WU Qiang,DONG Donglin,et al. Avoiding coal–water conflicts during the development of China’s large coal-producing regions[J]. Mine Water and the Environment,2012,31(1):74−78.
[4] 国家安全生产监督管理总局,国家煤矿安全监察局. 煤矿防治水规定[M]. 北京:煤炭工业出版社,2009.
[5] 国家煤矿安全监察局. 煤矿防治水细则[M]. 北京:煤炭工业出版社,2018.
[6] 施龙青. 突水系数由来及其适用性分析[J]. 山东科技大学学报(自然科学版),2012,31(6):6−9.
SHI Longqing. Analysis of the origin of water inrush cofficient and its applicability[J]. Journal of Shandong University of Science and Technology (Natural Science),2012,31(6):6−9.
[7] 钱鸣高,缪协兴,许家林. 岩层控制中的关键层理论研究[J]. 煤炭学报,1996,21(3):225−230.
QIAN Minggao,MIAO Xiexing,XU Jialin. Theoretical study of key stratum in ground control[J]. Journal of China Coal Society,1996,21(3):225−230.
[8] 李白英. 预防矿井底板突水的“下三带” 理论及其发展与应用[J]. 山东矿业学院学报(自然科学版),1999,18(4):11−18.
LI Baiying. “Down Three Zones” in the prediction of the water inrush from coalbed floor aquifer theory,development and application[J]. Journal of Shandong Institute of Mining and Technology (Natural Science),1999,18(4):11−18.
[9] 施龙青. 底板突水机理研究综述[J]. 山东科技大学学报(自然科学版),2009,28(3):17−23.
SHI Longqing. Summary of research on mechanism of water-inrush from seam floor[J]. Journal of Shandong University of Science and Technology (Natural Science),2009,28(3):17−23.
[10] 武强,张志龙,张生元,等. 煤层底板突水评价的新型实用方法Ⅱ:脆弱性指数法[J]. 煤炭学报,2007,32(11):1121−1126.
WU Qiang,ZHANG Zhilong,ZHANG Shengyuan,et al. A new practical methodology of the coal floor water bursting evaluating Ⅱ:The vulnerable index method[J]. Journal of China Coal Society,2007,32(11):1121−1126.
[11] 尹尚先,王玉国,李文生. 矿井水灾害:原因·对策·出路[J]. 煤田地质与勘探,2023,51(1):214−221.
YIN Shangxian,WANG Yuguo,LI Wensheng. Cause,countermeasures and solutions of water hazards in coal mines in China[J]. Coal Geology & Exploration,2023,51(1):214−221.
[12] 张平松,欧元超,李圣林. 我国矿井物探技术及装备的发展现状与思考[J]. 煤炭科学技术,2021,49(7):1−15.
ZHANG Pingsong,OU Yuanchao,LI Shenglin. Development quo-status and thinking of mine geophysical prospecting technology and equipment in China[J]. Coal Science and Technology,2021,49(7):1−15.
[13] 曾一凡,武强,赵苏启,等. 我国煤矿水害事故特征、致因与防治对策[J]. 煤炭科学技术,2023,51(7):1−14.
ZENG Yifan,WU Qiang,ZHAO Suqi,et al. Characteristics,causes,and prevention measures of coal mine water hazard accidents in China[J]. Coal Science and Technology,2023,51(7):1−14.
[14] 隋旺华. 矿山采掘岩体渗透变形灾变机理及防控Ⅱ:底板突水[J]. 工程地质学报,2022,30(6):1849−1866.
SUI Wanghua. Catastrophic mechanism and its prevention and control of seepage deformation and failure of mining rock mass Ⅱ:A review of water inrush from seam floor[J]. Journal of Engineering Geology,2022,30(6):1849−1866.
[15] 欧元超. 煤层采动底板裂隙扩展诱发突水多场表征试验研究[D]. 淮南:安徽理工大学,2022.
OU Yuanchao. Experimental study on multi-physical field characterization of water inrush induced by mining-induced floor fracture expansion in coal seam[D]. Huainan:Anhui University of Science & Technology,2022.
[16] 孙文斌,张士川. 深部采动底板突水模拟试验系统的研制与应用[J]. 岩石力学与工程学报,2015,34(增刊1):3274−3280.
SUN Wenbin,ZHANG Shichuan. Development of floor water invasion of mining influence simulation testing system and its application[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(Sup.1):3274−3280.
[17] 李杨杨,张士川,孙煕震,等. 煤层采动底板突水演变过程可视化试验平台研制与试验研究[J]. 煤炭学报,2021,46(11):3515−3524.
LI Yangyang,ZHANG Shichuan,SUN Xizhen,et al. Development and experimental study on visualization test platform for water inrush evolution process of coal seam mining floor[J]. Journal of China Coal Society,2021,46(11):3515−3524.
[18] 陈军涛,尹立明,孙文斌,等. 深部新型固流耦合相似材料的研制与应用[J]. 岩石力学与工程学报,2015,34(增刊2):3956−3964.
CHEN Juntao,YIN Liming,SUN Wenbin,et al. Development and application for new solid-fluid coupling similar material of deep floor aquifuge[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(Sup.2):3956−3964.
[19] 张平松,孙斌杨,许时昂. 基于BOTDR的煤层底板突水温度场监测模拟研究[J]. 重庆交通大学学报(自然科学版),2016,35(5):28−31.
ZHANG Pingsong,SUN Binyang,XU Shiang. Simulation research on BOTDR-based monitoring over temperature field of water inrushing from coal floor[J]. Journal of Chongqing Jiaotong University (Natural Science),2016,35(5):28−31.
[20] 冯梅梅,茅献彪,白海波,等. 承压水上开采煤层底板隔水层裂隙演化规律的试验研究[J]. 岩石力学与工程学报,2009,28(2):336−341.
FENG Meimei,MAO Xianbiao,BAI Haibo,et al. Experimental research on fracture evolution law of water-resisting strata in coal seam floor above aquifer[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(2):336−341.
[21] 姜耀东,吕玉凯,赵毅鑫,等. 承压水上开采工作面底板破坏规律相似模拟试验[J]. 岩石力学与工程学报,2011,30(8):1571−1578.
JIANG Yaodong,LYU Yukai,ZHAO Yixin,et al. Similar simulation test for breakage law of working face floor in coal mining above aquifer[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(8):1571−1578.
[22] 张培森,武守鑫,颜伟,等. 煤层底板承压水导升监测系统研发与应用[J]. 采矿与安全工程学报,2019,36(3):549−557.
ZHANG Peisen,WU Shouxin,YAN Wei,et al. Development and application of the monitoring system for the confined water upflowing in the coal seam floor[J]. Journal of Mining & Safety Engineering,2019,36(3):549−557.
[23] 王进尚,姚多喜. 承压水上含隐伏断层突水动态监测物理模拟研究[J]. 地下空间与工程学报,2022,18(2):681−689.
WANG Jinshang,YAO Duoxi. Physical simulation study on dynamic monitoring of water inrush from concealed fault in confined water[J]. Chinese Journal of Underground Space and Engineering,2022,18(2):681−689.
[24] 弓培林,胡耀青,赵阳升,等. 带压开采底板变形破坏规律的三维相似模拟研究[J]. 岩石力学与工程学报,2005,24(23):4396−4402.
GONG Peilin,HU Yaoqing,ZHAO Yangsheng,et al. Three-dimensional simulation study on law of deformation and breakage of coal floor on mining above aquifer[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(23):4396−4402.
[25] 王丹丹. 煤层底板突水危险源动态辨识及危险性动态评价[D]. 徐州:中国矿业大学,2021.
WANG Dandan. Dynamic hazard identification and risk assessment of mine water inrush from coal seam floor[D]. Xuzhou:China University of Mining and Technology,2021.
[26] 张文忠. 陷落柱突水三维大型模拟实验系统研制及应用[J]. 中国矿业大学学报,2016,45(1):56−61.
ZHANG Wenzhong. Development and application of 3D large-scale simulation experiment system of water inrush caused by collapse column[J]. Journal of China University of Mining & Technology,2016,45(1):56−61.
[27] 张杰,侯忠杰. 固−液耦合试验材料的研究[J]. 岩石力学与工程学报,2004,23(18):3157−3161.
ZHANG Jie,HOU Zhongjie. Experimental study on simulation materials for solid-liquid coupling[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(18):3157−3161.
[28] 胡耀青,赵阳升,杨栋. 三维固流耦合相似模拟理论与方法[J]. 辽宁工程技术大学学报,2007,26(2):204−206.
HU Yaoqing,ZHAO Yangsheng,YANG Dong. Simulation theory & method of 3D solid-liquid coupling[J]. Journal of Liaoning Technical University,2007,26(2):204−206.
[29] 孙文斌,张士川,李杨杨,等. 固流耦合相似模拟材料研制及深部突水模拟试验[J]. 岩石力学与工程学报,2015,34(增刊1):2665−2670.
SUN Wenbin,ZHANG Shichuan,LI Yangyang,et al. Development application of solid-fluid coupling similar material for floor strata and simulation test of water inrush in deep mining[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(Sup.1):2665−2670.
[30] ZHANG Shichuan,GUO Weijia,LI Yangyang,et al. Experimental simulation of fault water inrush channel evolution in a coal mine floor[J]. Mine Water and the Environment,2017,36(3):443−451.
[31] 史小萌,刘保国,亓轶. 水泥石膏胶结相似材料在固−流耦合试验中的适用性[J]. 岩土力学,2015,36(9):2624−2630.
SHI Xiaomeng,LIU Baoguo,QI Yi. Applicability of similar materials bonded by cement and plaster in solid-liquid coupling tests[J]. Rock and Soil Mechanics,2015,36(9):2624−2630.
[32] 刘金辉,李文枭,刘宇森,等. 多孔含水岩层的相似材料配比研究[J]. 岩土力学,2018,39(2):657−664.
LIU Jinhui,LI Wenxiao,LIU Yusen,et al. A method for determining the ratio of similar material to simulate porous water-bearing stratum[J]. Rock and Soil Mechanics,2018,39(2):657−664.
[33] 王双明,耿济世,李鹏飞,等. 煤炭绿色开发地质保障体系的构建[J]. 煤田地质与勘探,2023,51(1):33−43.
WANG Shuangming,GENG Jishi,LI Pengfei,et al. Construction of geological guarantee system for green coal mining[J]. Coal Geology & Exploration,2023,51(1):33−43.
[34] 文志杰,姜鹏飞,景所林,等. 煤矿地下水库底板渗流模拟试验系统研制及验证[J]. 煤炭学报,2021,46(5):1487−1497.
WEN Zhijie,JIANG Pengfei,JING Suolin,et al. Development and verification of simulation testing system for floor seepage in coal mine underground reservoir[J]. Journal of China Coal Society,2021,46(5):1487−1497.
[35] 张振杰,张强勇,向文,等. 复杂环境下新型流固耦合相似材料的研制及应用[J]. 中南大学学报(自然科学版),2021,52(11):4168−4180.
ZHANG Zhenjie,ZHANG Qiangyong,XIANG Wen,et al. Development and application of new-style hydro-mechanical coupling similar materials in complex environment[J]. Journal of Central South University (Science and Technology),2021,52(11):4168−4180.
[36] LIU Shiliang,LIU Weitao. Experimental development process of a new fluid–solid coupling similar-material based on the orthogonal test[J]. Processes,2018,6(11):211.
[37] ZHANG Pingsong,OU Yuanchao,SUN Binyang,et al. A case study of floor failure characteristics under fully mechanised caving mining conditions in extra-thick coal seams[J]. Journal of Geophysics and Engineering,2020,17(5):813−826.
[38] 靳德武,李鹏. 煤层底板水害防治智能决策支持系统框架构建[J]. 煤田地质与勘探,2021,49(1):161−169.
JIN Dewu,LI Peng. Framework on intelligent decision support system for coal seam floor water hazard prevention and control[J]. Coal Geology & Exploration,2021,49(1):161−169.
[39] 孙文斌,杨辉,赵金海,等. 断层突水灾变演化过程划分基础试验研究[J]. 煤炭科学技术,2023,51(7):118−128.
SUN Wenbin,YANG Hui,ZHAO Jinhai,et al. Basic experimental research on the delineation of the evolutionary process of fault water inrush[J]. Coal Science and Technology,2023,51(7):118−128.
[40] 刘静,刘盛东,刘志新,等. 采掘扰动岩体破坏自然电场近源效应[J]. 煤炭学报,2022,47(9):3451−3462.
LIU Jing,LIU Shengdong,LIU Zhixin,et al. Near-source effect of natural electric field responding to mining-induced rock mass destruction[J]. Journal of China Coal Society,2022,47(9):3451−3462.
[41] 李岗伟. 采场相似模拟声发射监测反演顶底板破裂特征[D]. 淮南:安徽理工大学,2022.
LI Gangwei. Acoustic emission inversion analysis of stope similar simulation roof and floor fracture characteristics[D]. Huainan:Anhui University of Science & Technology,2022.
[42] 张平松,刘盛东. 断层构造在矿井工作面震波CT反演中的特征显现[J]. 煤炭学报,2006,31(1):35−39.
ZHANG Pingsong,LIU Shengdong. Character appearance of fault structure in seismic wave CT inversion for mine work faces detecting[J]. Journal of China Coal Society,2006,31(1):35−39.
[43] 吕岗岗,沈荣喜,邱黎明,等. 矿井底板突水过程声电变化特征实验研究[J]. 工矿自动化,2015,41(10):16−19.
LÜ Ganggang,SHEN Rongxi,QIU Liming,et al. Experimental research of variation characteristics of electromagnetic radiation,acoustic emission and surface electric potential during water inrush in mine floor[J]. Industry and Mine Automation,2015,41(10):16−19.
[44] 王朋朋. 深部高承压水上采动底板损伤破裂突水机理及控制研究[D]. 北京:中国矿业大学(北京),2022.
WANG Pengpeng. Study on mechanism and control of water inrush from damaged and ruptured floor induced by mining disturbance and high water pressure in deep coal mining[D]. Beijing:China University of Mining & Technology (Beijing),2022.
[45] GAI Qiukai,GAO Yubing,ZHANG Xingxing,et al. A new method for evaluating floor spatial failure characteristics and water inrush risk based on microseismic monitoring[J]. Rock Mechanics and Rock Engineering,2024,57(4):2847−2875.
[46] 王皓,董书宁,姬亚东,等. 煤矿水害智能化防控平台架构及关键技术[J]. 煤炭学报,2022,47(2):883−892.
WANG Hao,DONG Shuning,JI Yadong,et al. Key technology and platform development of intelligent prevention and control on coal mine water disaster[J]. Journal of China Coal Society,2022,47(2):883−892.
[47] ZHANG Pingsong,SUN Binyang. Distribution characteristics of the advance abutment pressure in a deep stope[J]. Journal of Geophysics and Engineering,2020,17(4):686−699.
[48] 孙斌杨,张平松,付茂如,等. 采场底板岩层破坏规律光纤测试方法与效果[J]. 合肥工业大学学报(自然科学版),2017,40(5):701−707.
SUN Binyang,ZHANG Pingsong,FU Maoru,et al. Fiber optic test and results of failure law of floor strata in coal mining site[J]. Journal of Hefei University of Technology (Natural Science),2017,40(5):701−707.
[49] 姚多喜,刘畅. 煤层采动底板变形破坏过程多参数精细感知方法研究[J]. 煤炭科学技术,2023,51(7):44−52.
YAO Duoxi,LIU Chang. Multi-parameter fine sensing method of deformation and failure process of coal seam mining floor[J]. Coal Science and Technology,2023,51(7):44−52.
[50] 张玉军,张志巍,肖杰,等. 承压水体上煤层底板下位隐伏断层采动突水机制研究[J]. 煤炭科学技术,2023,51(2):283−291.
ZHANG Yujun,ZHANG Zhiwei,XIAO Jie,et al. Study on mining water inrush mechanism of buried fault under coal seam floor above confined water body[J]. Coal Science and Technology,2023,51(2):283−291.
[51] 彭守建,张倩文,许江,等. 基于三维数字图像相关技术的砂岩渗流−应力耦合变形局部化特性试验研究[J]. 岩土力学,2022,43(5):1197−1206.
PENG Shoujian,ZHANG Qianwen,XU Jiang,et al. Experimental study of deformation localization characteristics of sandstone under seepage-stress coupling based on 3D digital image correlation technology[J]. Rock and Soil Mechanics,2022,43(5):1197−1206.
[52] 孙亚军,张莉,徐智敏,等. 煤矿区矿井水水质形成与演化的多场作用机制及研究进展[J]. 煤炭学报,2022,47(1):423−437.
SUN Yajun,ZHANG Li,XU Zhimin,et al. Multi-field action mechanism and research progress of coal mine water quality formation and evolution[J]. Journal of China Coal Society,2022,47(1):423−437.
[53] 李攀峰. 煤层底板隐蔽水害危险源效应与定位实验研究[J]. 煤田地质与勘探,2021,49(4):178−184.
LI Panfeng. Hazard source effect and location experiment of concealed water disaster in coal seam floor[J]. Coal Geology & Exploration,2021,49(4):178−184.
[54] 丁立,王经明. 煤层底板隐蔽水害危险源识别与定位试验研究[J]. 煤炭科学技术,2022,50(8):172−179.
DING Li,WANG Jingming. Study on analogue experiment on hydrogeological effect and localization of hidden water hazard source in coal seam floor[J]. Coal Science and Technology,2022,50(8):172−179.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons