•  
  •  
 

Coal Geology & Exploration

Abstract

[Objective] The increasing importance of the exploration and exploitation of deep resources poses new requirements for high-precision seismic exploration. Given that conventional isotropy-based data processing methods are no longer applicable to the coal-bearing strata with strong anisotropy. [Methods] This study proposed a method for processing seismic data based on theories of both transverse isotropy medium with a vertical symmetry axis (VTI) media and transverse isotropy with a horizontal axis of symmetry (HTI) media. First, to characterize the depositional characteristics of coal-bearing strata, this study analyzed the features of VTI media, revealing that high-order dynamic correction can effectively eliminate anisotropy-induced event bending in large-offset seismic data, thus ensuring that the common reflection points in both far and near channels can be in-phase and improving the data stacking and imaging quality. Second, targeting the characteristics of tectonic fissures, this study relied on the azimuthal anisotropy analysis of HTI media. Specifically, using Offset-Vector Tiles (OVT) domain processing, the influence of varying azimuthal differences on data was removed by establishing the parameter fields of azimuthal anisotropy. Using both methods, this study developed a practical processing and correction method suitable for target strata with anisotropy by establishing a rational process and choosing optimal key parameters. This method can achieve effective velocity analysis and data stacking of coal-bearing strata under complex conditions, thus improving the resolution and interpretation accuracy of coal measures seismic data. [Results and Conclusions] The application results indicate that the new method can obtain seismic data with higher dominant frequency and a wider frequency band and is more advantageous in identifying the features of small structures and characterizing paleogeographic environments, thereby providing strong support for the fine-scale geological interpretation. This study highlighted the necessity of the processing of anisotropy for coal-bearing strata, potentially promoting the applications of anisotropy processing techniques in wide-azimuth seismic explorations.

Keywords

coal-bearing strata, VTI medium, HTI medium, higher-order dynamic correction, OVT domain processing

DOI

10.12363/issn.1001-1986.23.10.0712

Reference

[1] 姚艳斌,王辉,杨延辉,等. 煤层气储层可改造性评价:以郑庄区块为例[J]. 煤田地质与勘探,2021,49(1):119−129.

YAO Yanbin,WANG Hui,YANG Yanhui,et al. Evaluation of the hydro–fracturing potential for coalbed methane reservoir:A case study of Zhengzhuang CBM field[J]. Coal Geology & Exploration,2021,49(1):119−129.

[2] 邢廷栋,薛诗桂,黎小伟,等. 黄土塬区延安组煤层地震响应特征物理模拟研究[J]. 煤田地质与勘探,2021,49(6):87−94.

XING Tingdong,XUE Shigui,LI Xiaowei,et al. Physical modeling of seismic response for the coal seams of Yan’an Formation in loess tableland of North China[J]. Coal Geology & Exploration,2021,49(6):87−94.

[3] 王赟,郑永芹,杨春,等. 煤层长波长地震各向异性的多尺度效应初探[J]. 煤田地质与勘探,2023,51(2):263−272.

WANG Yun,ZHENG Yongqin,YANG Chun,et al. A preliminary study on the multiscale effect of seismic anisotropy of coal seams at long wavelengths[J]. Coal Geology & Exploration,2023,51(2):263−272.

[4] 钱进,崔若飞,陈同俊. 含煤地层各向异性介质有限差分数值模拟[J]. 煤田地质与勘探,2010,38(2):63−67.

QIAN Jin,CUI Ruofei,CHEN Tongjun. Anisotropic numerical simulation of coal–bearing strata with finite–difference[J]. Coal Geology & Exploration,2010,38(2):63−67.

[5] 李勤,王玮,马随波,等. HTI煤层方位AVO响应与裂隙识别[J]. 地球物理学进展,2021,36(1):178−186.

LI Qin,WANG Wei,MA Suibo,et al. Analysis of azimuthal AVO response and crack identification on HTI tectonic coal[J]. Progress in Geophysics,2021,36(1):178−186.

[6] 姬广忠,吴荣新,张平松,等. 黏弹TI煤层介质3层模型Love槽波频散与衰减特征[J]. 煤炭学报,2021,46(2):566−577.

JI Guangzhong,WU Rongxin,ZHANG Pingsong,et al. Dispersion and attenuation characteristics of Love channel waves in the three–layer model of viscoelastic TI coal seam media[J]. Journal of China Coal Society,2021,46(2):566−577.

[7] 邓志文,汪关妹,赵小辉,等. 宽方位HTI介质裂缝预测方法研究与应用[C]//中国石油学会. 2015年物探技术研讨会论文集. 宜昌,2015:516–518.

[8] 李佳欣,杨春,王赟. 薄互层等效各向异性的研究现状与存在问题[J]. 石油物探,2021,60(2):224−237.

LI Jiaxin,YANG Chun,WANG Yun. A state of the art on the equivalent anisotropy of thin interbeds[J]. Geophysical Prospecting for Petroleum,2021,60(2):224−237.

[9] 徐世刚,刘洋. 基于优化有限差分和混合吸收边界条件的三维VTI介质声波和弹性波数值模拟[J]. 地球物理学报,2018,61(7):2950−2968.

XU Shigang,LIU Yang. 3D acoustic and elastic VTI modeling with optimal finite–difference schemes and hybrid absorbing boundary conditions[J]. Chinese Journal of Geophysics,2018,61(7):2950−2968.

[10] 姜鸿莺,陈刚,程晨. 各向异性速度分析技术在VTI介质地震资料处理中的应用:以南川地区为例[C]//中国地质学会2015学术年会论文摘要汇编(下册). 西安,2015:803–811.

[11] 李慧婷,常锁亮,张生等. 基于各向异性高分辨地震处理的煤层顶板含水性风险评价[J/OL].[2023-07-31] 煤炭科学技术. https://kns.cnki.net/kcms2/article/abstract?v=8dkf_uZKVx1-aPUBDjLzbZuvVbFxvY2hmQEj7GebptFinYbZ4bkzWdFrd0WBNj1WZ9EYvK1gWYAAnH6jJSnZrqHQ0VbUAKg3nkTrwDN9idfNpN3gb0YJq7gUrXAV3fHnl46jTS6j9Bk=&uniplatform=NZKPT&language=CHS.

LI Huiting, CHANG Suoliang, ZHANG Sheng, et al. Evaluation of coal seam roof water–bearing risk area via anisotropic high–resolution seismic processing[J/OL]. [2023-07-31] Coal Science and Technology. https://kns.cnki.net/kcms2/article/abstract?v=8dkf_uZKVx1-aPUBDjLzbZuvVbFxvY2hmQEj7GebptFinYbZ4bkzWdFrd0WBNj1WZ9EYvK1gWYAAnH6jJSnZrqHQ0VbUAKg3nkTrwDN9idfNpN3gb0YJq7gUrXAV3fHnl46jTS6j9Bk=&uniplatform=NZKPT&language=CHS.

[12] 付强,罗彩明. 基于VTI介质理论的P波速度分析和动校正[J]. 物探化探计算技术,2008,30(1):10−16.

FU Qiang,LUO Caiming. P–wave nonhyperbolic moveout analysis in vti media[J]. Computing Techniques for Geophysical and Geochemical Exploration,2008,30(1):10−16.

[13] 姜鸿莺. 复杂地表各向异性地震资料关键处理技术应用研究[D]. 东营:中国石油大学(华东),2015.

JIANG Hongying. Research on key processing techniques of complex surface anisotropic seismic data[D]. Dongying:China University of Petroleum (Huadong),2015.

[14] RÜGER A. Variation of P–wave reflectivity with offset and azimuth in anisotropic media[J]. Geophysics,1998,63(3):935−947.

[15] RÜGER A. P–wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry[J]. Geophysics,1997,62(3):713−722.

[16] 吴海波. 煤层气储层开采条件的地震评价方法研究[D]. 徐州:中国矿业大学,2016.

WU Haibo. Seismic evaluation method research on exploitation condition of coal–bed methane reservoir[D]. Xuzhou:China University of Mining and Technology,2016.

[17] 田建章,陈会敏,曹建华,等. 各向异性处理技术探索与实践[J]. 石油天然气学报,2010,32(3):255−257.

TIAN Jianzhang,CHEN Huimin,CAO Jianhua,et al. Exploration and practice of anisotropic treating techniques[J]. Journal of Oil and Gas Technology,2010,32(3):255−257.

[18] 刘军迎,雍学善,张静,等. 基于叠前全方位角道集方位振幅梯度各向异性变化的HTI裂缝介质油气检测方法与技术[J]. 地球物理学报,2021,64(10):3807−3816.

LIU Junying,YONG Xueshan,ZHANG Jing,et al. Oil and gas detection method and technique of HTI fracture media based on the anisotropic variation of azimuth–amplitude gradient in prestack omni–directional incidence–angular gather[J]. Chinese Journal of Geophysics,2021,64(10):3807−3816.

[19] 吴萍,杨长春,王真理,等. HTI介质中的反射纵波方位属性[J]. 地球物理学进展,2009,24(3):944−950.

WU Ping,YANG Changchun,WANG Zhenli,et al. Reflection P–wave azimuthal attribute in HTI medium[J]. Progress in Geophysics,2009,24(3):944−950.

[20] 龚明平,张军华,王延光,等.分方位地震勘探研究现状及进展[J]. 石油地球物理勘探,2018,53(3):642–658.

GONG Mingping,ZHANG Junhua,WANG Yanguang,et al. Current situtions and recent progress in different azimuths seismic exploration[J]. Oil Geophysical Prospecting,2018,53(3):642–658.

[21] CORDSEN A,GALBRAITH M. Narrow– versus wide–azimuth land 3D seismic surveys[J]. The Leading Edge,2002,21(8):764−770.

[22] 李昂,张丽艳,杨建国,等.宽方位地震 OVT域方位各向异性校正技术[J]. 石油地球物理勘探,2021,56(1):62 –68.

Analysis and processing technology of azimuth anisotropy in OVT domain of wide-azimuth seismic data[J]. Oil Geophysical Prospecting,2021,56(1):62 –68.

[23] 印兴耀,张洪学,宗兆云. OVT数据域五维地震资料解释技术研究现状与进展[J]. 石油物探,2018,57(2):155−178.

YIN Xingyao,ZHANG Hongxue,ZONG Zhaoyun. Research status and progress of 5D seismic data interpretation in OVT domain[J]. Geophysical Prospecting for Petroleum,2018,57(2):155−178.

[24] SHI Ying,YU Bo,ZHOU Hui,et al. FMG_INV,a fast multi–Gaussian inversion method integrating well–log and seismic data[J]. IEEE Transactions on Geoscience and Remote Sensing,2024,62:4503112.

[25] YU Bo,SHI Ying,ZHOU Hui,et al. Fast Bayesian linearized inversion with an efficient dimension reduction strategy[J]. IEEE Transactions on Geoscience and Remote Sensing,2024,62:4502910.

[26] 徐翠娥,郝晓红,王影. 高密度双谱分析法在各向异性介质速度分析中的初步应用[J]. 海洋石油,2008,28(1):1−5.

XU Cui’e,HAO Xiaohong,WANG Ying. Application of high density bispectral analyzing method to velocity analysis in anisotropy media[J]. Offshore Oil,2008,28(1):1−5.

[27] 张丽艳,李昂,杨建国,等. 全方位道集速度建模方法及应用[J]. 地球物理学报,2022,65(10):4063−4072.

ZHANG Liyan,LI Ang,YANG Jianguo,et al. Full–azimuth gather velocity modeling method and application[J]. Chinese Journal of Geophysics,2022,65(10):4063−4072.

[28] 张宪旭. 基于宽方位地震数据的煤层裂隙预测方法研究[J]. 能源与环保,2021,43(7):114−119.

ZHANG Xianxu. Study on coal seam fracture prediction method based on wide azimuth seismic data[J]. China Energy and Environmental Protection,2021,43(7):114−119.

[29] 熊晓军,张鑫,张本健,等.裂缝融合分析的窄方位叠前裂缝预测技术.石油地球物理勘探,2021,56(5):1150–1156.

XIONG Xiaojun,ZHANG Xin,ZHANG Benjian,et al. Fracture prediction technology on prestack narrow azimuth data with fracture fusion analysis[J]. Oil Geophysical Prospecting,2021,56(5):1150–1156.

[30] 常锁亮,张生,刘晶,等. 薄互层条件下围岩变化对煤层反射波的影响研究[J]. 煤田地质与勘探,2021,49(5):220−229.

CHANG Suoliang,ZHANG Sheng,LIU Jing,et al. Influence of surrounding rock changes on the coal seam reflected wave under thin interbed condition[J]. Coal Geology & Exploration,2021,49(5):220−229.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.