•  
  •  
 

Coal Geology & Exploration

Abstract

The theoretical system of mine water prevention and control encompasses three fundamental aspects: disaster-causing mechanisms, risk evaluation, and disaster prediction. This theoretical system, having undergone rapid development over the past 20 years, aims to gain insights into the behavior characteristics of mine water and predict its evolutionary trend, thus serving the prevention and control of water disasters in mining areas. Applying machine learning, a powerful tool for data analysis and mining in the era of big data, to research into the theoretical system has garnered considerable attention. This study focuses on the specific applications of machine learning to the three fundamental aspects of the theoretical system. Specifically, this study offered a brief introduction to the current status of research on disaster-causing mechanisms based on the classification of varying water disasters, proposing that the application gap of machine learning to the mechanism research is due to its incapacity to make assumptions. This study posited that future research on disaster-causing mechanisms will still primarily rely on conventional methods like theoretical analysis, numerical simulation, and similarity simulation, with machine learning facilitating the acquisition and processing of geologic data. The analysis of method advantages reveals that the application of machine learning to the risk evaluation primarily via processing unstructured data and enriching evaluation methods. For disaster prediction, this study analyzed the drawbacks of prediction modes based merely on physics or data and expounded on the necessity of combining physical models with data-driven approaches. Accordingly, this study presented three methods for achieving the model-data dual-driven prediction mode. Additionally, this study explored the feasibility of image-based disaster prediction methods. With the increasing abundance of production and geologic data, machine learning will accelerate the development of the theoretical system, contributing to research on the systematic methodology for mine water prevention and control.

Keywords

machine learning, mine water inrush, mine water prevention and control, theoretical system, big data

DOI

10.12363/issn.1001-1986.23.10.0641

Reference

[1] 尹尚先,徐斌,尹慧超,等. 矿井水防治学科基本架构及内涵[J]. 煤炭科学技术,2023,51(7):24−35.

YIN Shangxian,XU Bin,YIN Huichao,et al. Basic structure and connotation of mine water prevention and control discipline[J]. Coal Science and Technology,2023,51(7):24−35.

[2] 尹尚先. 煤矿水害防治基础科学发展思考[J]. 煤炭工程,2016,48(增刊2):96−100.

YIN Shangxian. Thoughts of basic science development on mine water control and prevention[J]. Coal Engineering,2016,48(Sup.2):96−100.

[3] 姚辉,尹尚先,徐维,等. 基于组合赋权的加权秩和比法的底板突水危险性评价[J]. 煤田地质与勘探,2022,50(6):132−137.

YAO Hui,YIN Shangxian,XU Wei,et al. Risk assessment of floor water inrush by weighted rank sum ratio based on combination weighting[J]. Coal Geology & Exploration,2022,50(6):132−137.

[4] 尹尚先,徐维,尹慧超,等. 深部开采底板厚隔水层突水危险性评价方法研究[J]. 煤炭科学技术,2020,48(1):83−89.

YIN Shangxian,XU Wei,YIN Huichao,et al. Study on risk assessment method of water inrush from thick floor aquifuge in deep mining[J]. Coal Science and Technology,2020,48(1):83−89.

[5] 梁满玉,尹尚先,姚辉,等. 基于DRN–BiLSTM模型的矿井涌水量预测[J]. 煤矿安全,2023,54(5):56−62.

LIANG Manyu,YIN Shangxian,YAO Hui,et al. Mine water inflow prediction based on DRN–BiLSTM model[J]. Safety in Coal Mines,2023,54(5):56−62.

[6] 尹尚先,连会青,徐斌,等. 深部带压开采:传承与创新[J]. 煤田地质与勘探,2021,49(1):170−181.

YIN Shangxian,LIAN Huiqing,XU Bin,et al. Deep mining under safe water pressure of aquifer:Inheritance and innovation[J]. Coal Geology & Exploration,2021,49(1):170−181.

[7] 钟义信. “范式变革” 引领与“信息转换” 担纲:机制主义通用人工智能的理论精髓[J]. 智能系统学报,2020,15(3):615−622.

ZHONG Yixin. Leading of paradigm shift and undertaking of information conversion:Theoretical essence of mechanism–based general AI[J]. CAAI Transactions on Intelligent Systems,2020,15(3):615−622.

[8] 郭华东,王力哲,陈方,等. 科学大数据与数字地球[J]. 科学通报,2014,59(12):1047−1054.

GUO Huadong,WANG Lizhe,CHEN Fang,et al. Scientific big data and digital Earth[J]. Chinese Science Bulletin,2014,59(12):1047−1054.

[9] 赵颖旺,武强,王潇,等. 基于人工智能的矿井水害灾情研判及预测研究[J]. 中国矿业大学学报,2023,52(1):10−19.

ZHAO Yingwang,WU Qiang,WANG Xiao,et al. The research on mine water disaster situation discrimination and prediction based on artificial intelligence[J]. Journal of China University of Mining & Technology,2023,52(1):10−19.

[10] 董书宁. 人工智能技术在煤矿水害防治智能化发展中的应用[J]. 煤矿安全,2023,54(5):1−12.

DONG Shuning. Application of artificial intelligence technology in intelligent development of coal mine water disaster prevention and control[J]. Safety in Coal Mines,2023,54(5):1−12.

[11] 邵良杉,庞志晴. 基于MIV-IPFA-ELM的矿井突水水源识别模型[J]. 辽宁工程技术大学学报(自然科学版),2023,42(4):404−411.

SHAO Liangshan,PANG Zhiqing. Mine water inrush source identification model based on MIV–IPFA–ELM[J]. Journal of Liaoning Technical University (Natural Science),2023,42(4):404−411.

[12] 邱梅,许高瑞,宋光耀,等. PCA–WNN模型在导水裂隙带高度预测中的应用研究[J]. 河南理工大学学报(自然科学版),2023,42(6):27−36.

QIU Mei,XU Gaorui,SONG Guangyao,et al. Research on application of PCA–WNN model in predicting the development height of water–flowing fractured zones[J]. Journal of Henan Polytechnic University (Natural Science),2023,42(6):27−36.

[13] 刘涛雄,刘骏. 人工智能、机器人与经济发展研究进展综述[J]. 经济社会体制比较,2018(6):172−178.

LIU Taoxiong,LIU Jun. A literature review on artificial intelligence,robotics and economic development[J]. Comparative Economic & Social Systems,2018(6):172−178.

[14] 岳中文,闫逸飞,王煦,等. 基于随钻数据的岩性识别机器学习算法研究进展[J]. 科学技术与工程,2023,23(10):4044−4057.

YUE Zhongwen,YAN Yifei,WANG Xu,et al. Research progress of machine learning algorithm for lithology identification based on data while drilling[J]. Science Technology and Engineering,2023,23(10):4044−4057.

[15] 柴浩轩,金曦,许驰,等. 面向工业物联网的5G机器学习研究综述[J]. 信息与控制,2023,52(3):257−276.

CHAI Haoxuan,JIN Xi,XU Chi,et al. Review of machine learning–based 5G for industrial Internet of Things[J]. Information and Control,2023,52(3):257−276.

[16] 马世龙,乌尼日其其格,李小平. 大数据与深度学习综述[J]. 智能系统学报,2016,11(6):728−742.

MA Shilong,WUNIRI Qiqige,LI Xiaoping. Deep learning with big data:state of the art and development[J]. CAAI Transactions on Intelligent Systems,2016,11(6):728−742.

[17] 张荣,李伟平,莫同. 深度学习研究综述[J]. 信息与控制,2018,47(4):385−397.

ZHANG Rong,LI Weiping,MO Tong. Review of deep learning[J]. Information and Control,2018,47(4):385−397.

[18] 周飞燕,金林鹏,董军. 卷积神经网络研究综述[J]. 计算机学报,2017,40(6):1229−1251.

ZHOU Feiyan,JIN Linpeng,DONG Jun. Review of convolutional neural network[J]. Chinese Journal of Computers,2017,40(6):1229−1251.

[19] 崔雍浩,商聪,陈锶奇,等. 人工智能综述:AI的发展[J]. 无线电通信技术,2019,45(3):225−231.

CUI Yonghao,SHANG Cong,CHEN Siqi,et al. Overview of AI:Developments of AI techniques[J]. Radio Communications Technology,2019,45(3):225−231.

[20] HINTON. G E, SALAKHUTDINOV R R. Reolucing the dimensionality of data with neural networks[J]. Science,2006,313(5786):504−507.

[21] 侯宇青阳,全吉成,王宏伟. 深度学习发展综述[J]. 舰船电子工程,2017,37(4):5−9.

HOU Yuqingyang,QUAN Jicheng,WANG Hongwei. Review of deep learning development[J]. Ship Electronic Engineering,2017,37(4):5−9.

[22] 陈结,高靖宽,蒲源源,等. 冲击地压预测预警的机器学习方法[J]. 采矿与岩层控制工程学报,2021,3(1):57−68.

CHEN Jie,GAO Jingkuan,PU Yuanyuan,et al. Machine learning method for predicting and warning of rockbursts[J]. Journal of Mining and Strata Control Engineering,2021,3(1):57−68.

[23] 王国法,刘峰,孟祥军,等. 煤矿智能化(初级阶段)研究与实践[J]. 煤炭科学技术,2019,47(8):1−36.

WANG Guofa,LIU Feng,MENG Xiangjun,et al. Research and practice on intelligent coal mine construction (primary stage)[J]. Coal Science and Technology,2019,47(8):1−36.

[24] 左人宇,龚晓南,桂和荣. 多因素影响下煤层底板变形破坏规律研究[J]. 东北煤炭技术,1999(5):3−7.

ZUO Renyu,GONG Xiaonan,GUI Herong. Research of the coal seam floor’s strain and fracture regularity influenced by several facts[J]. Coal Technology of Northeast China,1999(5):3−7.

[25] 武强. 我国矿井水防控与资源化利用的研究进展、问题和展望[J]. 煤炭学报,2014,39(5):795−805.

WU Qiang. Progress,problems and prospects of prevention and control technology of mine water and reutilization in China[J]. Journal of China Coal Society,2014,39(5):795−805.

[26] 姚辉,尹慧超,尹尚先,等. 底板突水危险性评价研究进展[J]. 煤炭科学技术,2023,51(增刊2):1−9.

YAO Hui,YIN Huichao,YIN Shangxian,et al. Developing of the evaluation of water inrush risk from coal seam floor[J]. Coal Science and Technology,2023,51(Sup.2):1−9.

[27] 尹尚先,王玉国,李文生. 矿井水灾害:原因·对策·出路[J]. 煤田地质与勘探,2023,51(1):214−221.

YIN Shangxian,WANG Yuguo,LI Wensheng. Cause,countermeasures and solutions of water hazards in coal mines in China[J]. Coal Geology & Exploration,2023,51(1):214−221.

[28] 钱鸣高,缪协兴,何富连. 采场“砌体梁” 结构的关键块分析[J]. 煤炭学报,1994,19(6):557−563.

QIAN Minggao,MIAO Xiexing,HE Fulian. Analysis of key block in the structure of voussoir beam in longwall mining[J]. Journal of China Coal Society,1994,19(6):557−563.

[29] 宋振骐,蒋金泉. 煤矿岩层控制的研究重点与方向[J]. 岩石力学与工程学报,1996,15(2):128−134.

SONG Zhenqi,JIANG Jinquan. Research emphasis and direction of strata control in coal mine[J]. Chinese Journal of Rock Mechanics and Engineering,1996,15(2):128−134.

[30] 煤炭科学研究院北京开采研究所. 煤矿地表移动与覆岩破坏规律及其应用[M]. 北京:煤炭工业出版社,1981.

[31] 曾一凡,朱慧聪,武强,等. 我国煤层顶板水害研究现状与防控路径[J/OL]. 煤炭学报,2024,[2024-04-25]. https://doi.org/10.13225/j.cnki.jccs.2024.0039.

ZENG Yifan,ZHU Huicong,WU Qiang,et al. Research status and prevention and control path of coal seam roof water disaster in China[J/OL]. Journal of China Coal Society,2024,[2024-04-25]. https://doi.org/10.13225/j.cnki.jccs.2024.0039.

[32] 吴禄源. 煤层覆岩离层突水灾害演变机理研究[D]. 徐州:中国矿业大学,2020.

WU Luyuan. Study on evolution mechanism of bed separation space water inrush in the overburden of coal seam[D]. Xuzhou:China University of Mining and Technology,2020.

[33] 董书宁,樊敏,郭小铭,等. 陕西省煤矿典型水灾隐患特征及治理技术[J]. 煤炭学报,2024,49(2):902−916.

DONG. Shuning,FAN Min,GUO Xiaoming,et al. Characteristics and prevention and control techniques of typical water hazards in coal mines in Shaanxi province[J]. Journal of China Coal Society,2024,49(2):902−916.

[34] 李白英. 预防矿井底板突水的“下三带” 理论及其发展与应用[J]. 山东矿业学院学报(自然科学版),1999,18(4):11−18.

LI Baiying. “Down Three Zones” in the Prediction of the water inrush from Coalbed Floor Aquifer theory,Development and Application[J]. Journal of Shandong University of Science and Technology (Natural Science),1999,18(4):11−18.

[35] 王作宇,刘鸿泉,王培彝,等. 承压水上采煤学科理论与实践[J]. 煤炭学报,1994,19(1):40−48.

WANG Zuoyu,LIU Hongquan,WANG Peiyi,et al. Theory and practice of coal mining discipline on confined water[J]. Journal of China Coal Society,1994,19(1):40−48.

[36] 钱鸣高,缪协兴,黎良杰. 采场底板岩层破断规律的理论研究[J]. 岩土工程学报,1995,17(6):55−62.

QIAN Minggao,MIAO Xiexing,LI Liangjie. Mechanism for the fracyure behaviours of main floor in longwall mining[J]. Chinese Journal of Geotechnical Engineering,1995,17(6):55−62.

[37] 王进尚. 煤层底板破坏与递进导升协同突水致灾机理研究[D]. 淮南:安徽理工大学,2021.

WANG Jinshang. Study on mechanism of collaborative water inrush caused by floor failure and water progressive up intrusion along hidden faults or fractures[D]. Huainan:Anhui University of Science and Technology,2021.

[38] 王经明. 承压水沿煤层底板递进导升突水机理的模拟与观测[J]. 岩土工程学报,1999,21(5):546−549.

WANG Jingming. In situ measurement and physical analogue on water inrush from coal floor induced by progressive intrusion of artesian water into protective aquiclude[J]. Chinese Journal of Geotechnical Engineering,1999,21(5):546−549.

[39] 李昂,周永根,杨宇轩,等. 大埋深高承压水双层结构底板破坏机理及应用研究[J]. 煤炭科学技术,2023,51(10):207−219.

LI Ang,ZHOU Yonggen,YANG Yuxuan,et al. Study on failure mechanism and application of double–layer structure floor with large buried depth and high confined water[J]. Coal Science and Technology,2023,51(10):207−219.

[40] 尹尚先,王屹,尹慧超,等. 深部底板奥灰薄灰突水机理及全时空防治技术[J]. 煤炭学报,2020,45(5):1855−1864.

YIN Shangxian,WANG Yi,YIN Huichao,et al. Mechanism and full–time–space prevention and control technology of water inrush from Ordovician and thin limestone in deep mines[J]. Journal of China Coal Society,2020,45(5):1855−1864.

[41] 施龙青,曲有刚,徐望国. 采场底板断层突水判别方法[J]. 矿山压力与顶板管理,2000,17(2):49−51.

SHI Longqing,QU Yougang,XU Wangguo. Method to determine water inrush from a fault in floor[J]. Ground Pressure and Strata Control,2000,17(2):49−51.

[42] 王壹,杨伟峰,李明,等. 采动断层活化引发突水机理研究[J]. 煤炭工程,2011(8):90−92.

WANG Yi,YANG Weifeng,LI Ming,et al. Study on mechanism of water inrush occurred by mining fault activation[J]. Coal Engineering,2011(8):90−92.

[43] 张培森,颜伟,张文泉,等. 固液耦合模式下含断层缺陷煤层回采诱发底板损伤及断层活化突水机制研究[J]. 岩土工程学报,2016,38(5):877−889.

ZHANG Peisen,YAN Wei,ZHANG Wenquan,et al. Mechanism of water inrush due to damage of floor and fault activation induced by mining coal seam with fault defects under fluid-solid coupling mode[J]. Chinese Journal of Geotechnical Engineering,2016,38(5):877−889.

[44] 石瑞明. 断层失稳诱发煤矿冲击地压的力学机制研究[D]. 北京:中国矿业大学(北京),2022.

SHI Ruiming. Study on the mechanical mechanism of coal burst induced by fault instability[D]. Beijing:China University of Mining and Technology (Beijing),2022.

[45] 尹尚先,王尚旭,武强. 陷落柱突水模式及理论判据[J]. 岩石力学与工程学报,2004,23(6):964−968.

YIN Shangxian,WANG Shangxu,WU Qiang. Water inrush patterns and theoretic criteria of karstic collapse columns[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(6):964−968.

[46] 王家臣,李见波. 预测陷落柱突水灾害的物理模型及理论判据[J]. 北京科技大学学报,2010,32(10):1243−1247.

WANG Jiachen,LI Jianbo. Physical model and theoretic criterion of the forecast of water inrush caused by collapse columns[J]. Journal of University of Science and Technology Beijing,2010,32(10):1243−1247.

[47] 尹尚先,连会青,刘德民,等. 华北型煤田岩溶陷落柱研究70年:成因·机理·防治[J]. 煤炭科学技术,2019,47(11):1−29.

YIN Shangxian,LIAN Huiqing,LIU Demin,et al. 70 years of investigation on karst collapse column in North China coalfield:Cause of origin,mechanism and prevention[J]. Coal Science and Technology,2019,47(11):1−29.

[48] 张勃阳,白海波,张凯. 类陷落柱介质渗流突变机制试验研究[J]. 岩土力学,2016,37(3):745−752.

ZHANG Boyang,BAI Haibo,ZHANG Kai. Experimental research on seepage mutation mechanism of collapse column medium[J]. Rock and Soil Mechanics,2016,37(3):745−752.

[49] 张勃阳,白海波,张凯. 采动影响下陷落柱的滞后突水机理研究[J]. 中国矿业大学学报,2016,45(3):447−454.

ZHANG Boyang,BAI Haibo,ZHANG Kai. Study on the mechanism of delayed water inrush of collapse column under the influence of mining[J]. Journal of China University of Mining & Technology,2016,45(3):447−454.

[50] 张勃阳,白海波,张凯. 陷落柱填隙物全应力–应变过程的渗流特性研究[J]. 采矿与安全工程学报,2016,33(4):734−740.

ZHANG Boyang,BAI Haibo,ZHANG Kai. Research on permeability characteristics of karst collapse column fillings in complete stress–strain process[J]. Journal of Mining & Safety Engineering,2016,33(4):734−740.

[51] 李见波,许延春. 承压水渗流条件下预防陷落柱突水力学模型及应用[J]. 中国矿业大学学报,2016,45(2):217−224.

LI Jianbo,XU Yanchun. Mechanical model of the collapse column water inrush prevention considering the confined water seepage and its application[J]. Journal of China University of Mining & Technology,2016,45(2):217−224.

[52] 罗立平. 矿井老空水形成机制与防水煤柱留设研究[D]. 北京:中国矿业大学(北京),2010.

LUO Liping. Research on the form mechanism of goaf water and its waterproof coal pillar dimension problem in coal mine[D]. Beijing:China University of Mining and Technology (Beijing),2010.

[53] 窦林名,贺虎. 煤矿覆岩空间结构OX–F–T演化规律研究[J]. 岩石力学与工程学报,2012,21(3):453−460.

DOU Linming,HE Hu. Study of OX–F–T spatial structure evolution of overlying strata in coal mines[J]. Chinese Journal of Rock Mechanics and Engineering,2012,21(3):453−460.

[54] 罗斌. 积水采空区围岩(煤)导水通道形成机理研究[D]. 徐州:中国矿业大学,2021.

LUO Bin. Reseach on the mechanism of water–conducted fractures in rock and coal near the goafs[D]. Xuzhou:China University of Mining and Technology,2021.

[55] 钱瑞鹏. 掘巷影响下积水采空区隔水煤体损伤破坏规律及失稳致灾机理研究[D]. 太原:太原理工大学,2022.

QIAN Ruipeng. Study on failure and disaster mechanism of water–resisting coal mass under influence of roadway excavation[D]. Taiyuan:Taiyuan University of Technology,2022.

[56] 胡绞脐,胡耀青. 老空区边界防水煤(岩)柱留设的研究[J]. 太原理工大学学报,2016,47(2):178−182.

HU Jiaoqi,HU Yaoqing. Study on the boundary waterproof coal (rock) pillar of old goaf[J]. Journal of Taiyuan University of Technology,2016,47(2):178−182.

[57] 杨金显,王小康,仝小森. 基于LMD–SNN的随钻异常振动识别[J]. 传感技术学报,2021,34(8):1102−1108.

YANG Jinxian,WANG Xiaokang,TONG Xiaosen. Identification of abnormal vibration while drilling based on LMD–SNN[J]. Chinese Journal of Sensors and Actuators,2021,34(8):1102−1108.

[58] 程久龙,焦俊俊,陈志,等. 钻孔瞬变电磁法扫描探测RCQPSO–LMO组合算法2.5D反演[J]. 地球物理学报,2024,67(2):781−792.

CHENG Jiulong,JIAO Junjun,CHEN Zhi,et al. 2.5D inversion of borehole transient electromagnetic method with scanning detection based on RCQPSO–LMO combined algorithm[J]. Chinese Journal of Geophysics,2024,67(2):781−792.

[59] 李苍柏,肖克炎,李楠,等. 支持向量机、随机森林和人工神经网络机器学习算法在地球化学异常信息提取中的对比研究[J]. 地球学报,2020,41(2):309−319.

LI Cangbai,XIAO Keyan,LI Nan,et al. A comparative study of support vector mechanine,random forest and artificial neural network machine learning algorithms in geochemical anomaly information extraction[J]. Acta Geoscientica Sinica,2020,41(2):309−319.

[60] 安然,储继华,洪先锋. 面向非结构化数据的情报分析方法体系框架研究[J]. 情报理论与实践,2024,47(2):143−150.

AN Ran,CHU Jihua HONG,Xianfeng. The method framework for unstructured data driven information analysis[J]. Information Studies:Theory & Application,2024,47(2):143−150.

[61] 吴冲龙,刘刚,张夏林,等. 地质科学大数据及其利用的若干问题探讨[J]. 科学通报,2016,61(16):1797−1807.

WU Conglong,LIU Gang,ZHANG Xialin,et al. Discussion on geological science big data and its application[J]. Chinese Science Bulletin,2016,61(16):1797−1807.

[62] 刘浩,刘海滨,孙宇,等. 煤矿井下员工不安全行为智能识别系统[J]. 煤炭学报,2021,46(增刊2):1159–1169.

LIU Hao,LIU Haibin,SUN Yu,et al. Intelligent identification system of unsafe behavior of employees in coal mine[J]. Journal of China Coal Society,2021,46(Sup.2):1159–1169.

[63] 沈铭华,马昆,杨洋,等. AI智能视频识别技术在煤矿智慧矿山中的应用[J]. 煤炭工程,2023,55(4):92−97.

SHEN Minghua,MA Kun,YANG Yang,et al. Application of AI identification technology in intelligent coal mine[J]. Coal Engineering,2023,55(4):92−97.

[64] 赵晨德,王心义,任君豪,等. 基于深度学习理论的煤层底板突水危险性预测[J]. 地下空间与工程学报,2023,19(6):2090−2100.

ZHAO Chende,WANG Xinyi,REN Junhao,et al. Prediction of water inrush risk from coal seam floor based on deep learning theory[J]. Chinese Journal of Underground Space and Engineering,2023,19(6):2090−2100.

[65] 施龙青,谭希鹏,王娟,等. 基于PCA_Fuzzy_PSO_SVC的底板突水危险性评价[J]. 煤炭学报,2015,40(1):167−171.

SHI Longqing,TAN Xipeng,WANG Juan,et al. Risk assessment of water inrush based on PCA_Fuzzy_PSO_SVC[J]. Journal of China Coal Society,2015,40(1):167−171.

[66] 许更. 基于机器学习的煤层顶板突水危险性评价模型研究[D]. 徐州:中国矿业大学,2023.

XU Geng. Study on risk assessment of coal seam roof based on machine learning[D]. Xuzhou:China University of Mining and Technology,2023.

[67] 尹尚先. 矿井水预测探查及预警保障技术[J]. 中国煤炭地质,2010,22(1):37−40.

YIN Shangxian. Mine water advanced exploration and early–warning safeguarding techniques[J]. Coal Geology of China,2010,22(1):37−40.

[68] 徐智敏. 深部开采底板破坏及高承压突水模式、前兆与防治[D]. 徐州:中国矿业大学,2010.

XU Zhimin. Mining-induced floor failure and the model, precursor and prevention of confined water inrush with high pressure in deep mining[D]. Xuzhou:China University of Mining and Technology,2010.

[69] 刘德民. 华北型煤田矿井突水机理及预警技术:以赵庄矿为例[D]. 北京:中国矿业大学(北京),2015.

LIU Demin. Mechanism of Water–inrush and early warning technology in North–China–type coalfield[D]. Beijing:China University of Mining and Technology (Beijing),2015.

[70] 李新,马瀚青,冉有华,等. 陆地碳循环模型–数据融合:前沿与挑战[J]. 中国科学:地球科学,2021,51(10):1650−1663.

LI Xin,MA Hanqing,RAN Youhua,et al. Terrestrial carbon cycle model–data fusion:Progress and challenges[J]. Scientia Sinica (Terrae),2021,51(10):1650−1663.

[71] 李新. 陆地表层系统模拟和观测的不确定性及其控制[J]. 中国科学:地球科学,2013,43(11):1735−1742.

LI Xin. Characterization,controlling,and reduction of uncertainties in the modeling and observation of land–surface systems[J]. Scientia Sinica (Terrae),2013,43(11):1735−1742.

[72] 刘慧,刘桂芹,宁殿艳,等. 基于VMD–DBN的矿井涌水量预测方法[J]. 煤田地质与勘探,2023,51(6):13−21.

LIU Hui,LIU Guiqin,NING Dianyan,et al. Mine water inrush prediction method based on VMD–DBN model[J]. Coal Geology & Exploration,2023,51(6):13−21.

[73] 周帅,李书乾,尹尚先,等. 新型老空底板奥灰突水:成因机制及防控技术[J]. 煤田地质与勘探,2023,51(7):103−112.

ZHOU Shuai,LI Shuqian,YIN Shangxian,et al. A new type of Ordovician limestone karst water inrush from the floor of old goaf:Formation mechanism and the prevention and control technology[J]. Coal Geology & Exploration,2023,51(7):103−112.

[74] 余国锋. 基于微震和神经网络的煤层底板突水预警技术研究[D]. 淮南:安徽理工大学,2022.

YU Guofeng. Research on early warning methods of water inrush from coal seam floor strata based on microseismic and neural network technologies[D]. Huainan:Anhui University of Science & Technology,2022.

[75] 窦林名,周坤友,宋士康,等. 煤矿冲击矿压机理、监测预警及防控技术研究[J]. 工程地质学报,2021,29(4):917−932.

DOU Linming,ZHOU Kunyou,SONG Shikang,et al. Occurrence mechanism,monitoring and prevention technology of rockburst in coal mines[J]. Journal of Engineering Geology,2021,29(4):917−932.

[76] KARNIADAKIS G E,KEVREKIDIS I G,LU Lu,et al. Physics–informed machine learning[J]. Nature Reviews Physics,2021,3:422−440.

[77] 黄春林,侯金亮,李维德,等. 深度学习融合遥感大数据的陆地水文数据同化:进展与关键科学问题[J]. 地球科学进展,2023,38(5):441−452.

HUANG Chunlin,HOU Jinliang,LI Weide,et al. Data assimilation in terrestrial hydrology based on deep learning fusing remote sensing big data:Research advances and key scientific issues[J]. Advances in Earth Science,2023,38(5):441−452.

[78] BOUKABARA S A,KRASNOPOLSKY V,PENNY S G,et al. Outlook for exploiting artificial intelligence in the earth and environmental sciences[J]. Bulletin of the American Meteorological Society,2021,102(5):1016−1032.

[79] KARPATNE A,ATLURI G,FAGHMOUS J H,et al. Theory–guided data science:A new paradigm for scientific discovery from data[J]. IEEE Transactions on Knowledge and Data Engineering,2017,29(10):2318−2331.

[80] WANG Kun,JOHNSON C W,BENNETT K C,et al. Predicting fault slip via transfer learning[J]. Nature Communications,2021,12(1):7319.

[81] WU Haiyi,FANG Wenzhen,KANG Qinjun,et al. Predicting effective diffusivity of porous media from images by deep learning[J]. Scientific Reports,2019,9(1):20387.

[82] 杨晓光,谭龙,郝文琦,等. 数据驱动的高温结构强度与寿命评估:进展与挑战[J]. 推进技术,2023,44(5):8−25.

YANG Xiaoguang,TAN Long,HAO Wenqi,et al. Data–driven structural strength and life assessment of high temperature structure:Progresses and challenges[J]. Journal of Propulsion Technology,2023,44(5):8−25.

[83] HSIAO Y D,KANG Jialin,WONG D S H. Development of robust and physically interpretable soft sensor for industrial distillation column using transfer learning with small datasets[J]. Processes,2021,9(4):667.

[84] MIANROODI J R,H SIBONI N,RAABE D. Teaching solid mechanics to artificial intelligence:A fast solver for heterogeneous materials[J]. NPJ Computational Materials,2021,7:99.

[85] WU Haiyi,QIAO Rui. Physics–constrained deep learning for data assimilation of subsurface transport[J]. Energy and AI,2021,3:100044.

[86] HE Qizhi,BARAJAS–SOLANO D,TARTAKOVSKY G,et al. Physics–informed neural networks for multiphysics data assimilation with application to subsurface transport[J]. Advances in Water Resources,2020,141:103610.

[87] BORATE P,RIVIÈRE J,MARONE C,et al. Using a physics–informed neural network and fault zone acoustic monitoring to predict lab earthquakes[J]. Nature Communications,2023,14:3693.

[88] 卞永明,高飞,李梦如,等. 结合Kmeans++聚类和颜色几何特征的火焰检测方法[J]. 中国工程机械学报,2020,18(1):1−6.

BIAN Yongming,GAO Fei,LI Mengru,et al. Fire detection method using Kmeans++ clustering and features of mixed color and geometry[J]. Chinese Journal of Construction Machinery,2020,18(1):1−6.

[89] 苏煜,山世光,陈熙霖,等. 基于全局和局部特征集成的人脸识别[J]. 软件学报,2010,21(8):1849−1862.

SU Yu,SHAN Shiguang,CHEN Xilin,et al. Integration of global and local feature for face recognition[J]. Journal of Software,2010,21(8):1849−1862.

[90] 马峻,胡成,陈雷. 基于游览时长的景区瞬时人数动态估计方法:以恭王府博物馆为例[J]. 西安科技大学学报,2021,41(3):566−574.

MA. Jun,HU Cheng,CHEN Lei. Dynamic estimation method of the instantaneous number of visitors in scenic spots based on tour duration—a case of Prince Kung’s Palace Museum[J]. Journal of Xi’an University of Science and Technology,2021,41(3):566−574.

[91] 孔烜,张杰,邓露,等. 基于机器视觉的车辆检测与参数识别研究进展[J]. 中国公路学报,2021,34(4):13−30.

KONG Xuan,ZHANG Jie,DENG Lu,et al. Research advances on vehicle parameter identification based on machine vision[J]. China Journal of Highway and Transport,2021,34(4):13−30.

[92] 王荣本,王超,初秀民. 路面破损图像识别研究进展[J]. 吉林工业大学学报(工学版),2002,32(4):91−97.

WANG Rongben,WANG Chao,CHU Xiumin. Developments of research on road pavement surface distress image recognition[J]. Journal of Jilin University (Engineering and Technology Edition),2002,32(4):91−97.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.