•  
  •  
 

Coal Geology & Exploration

Abstract

Water hazard on the coal seam proof induced by high-intensity coal mining are increasingly prominent in the Inner Mongolia-Shaanxi border region. The effective, accurate water-source discrimination of the water inrushes is the key to water hazard prevention. This study investigated three typical mines in the Inner Mongolia-Shaanxi border region. To this end, principal component analysis (PCA) was employed to extract principal components from 80 groups of groundwater samples. Then, with inorganic indicators K++Na+, Ca2+, Mg2+, Cl, SO4 2−, HCO3 and TDS and organic indicators UV254, TOC, and dissolved organic matter (DOM)’s fluorescence spectra as discriminant indicators, this study proposed a intelligent identificaton method of PCA-AFSA-RF roof water inrush source by using artificial fish swarm algorithm (AFSA) to improve random forest (RF). First, a PCA-RF discriminant model was established, with accuracy (Ac), precision (Pr), recall (Rc), and F-measure (f1) of 83.00%, 83.17%, 80.42%, and 79.57%, respectively. Then, in the PCA-RF discriminant model, AFSA was employed to optimize the number of decision trees, the depth of trees, and the minimum sample number needed for internal node splitting. Furthermore, a genetic mechanism was introduced into AFSA to avoid local optimization. In this way, a PCA-AFSA-RF water-source discriminant model for water inrushes on coal seam roofs was established, with Ac, Pr, Rc, and f1 of up to 92.18%, 91.11%, 87.58%, and 88.82%, respectively, increasing by 9.18%, 7.94%, 7.16%, and 9.25% compared to the PCA-RF model. Furthermore, the PCA-AFSA-RF exhibited a back substitution accuracy reaching 97.50%. Finally, this model was used for the water-source discrimination of 12 water samples from the mines, yielding results consistent with the actual results in the field. This indicates that the PCA-RF model with improved AFSA enjoys better accuracy and generalization ability. The research results of this study can provide a new method for the accurate water-source identification of water inrushes from coal seam roofs.

Keywords

Inner Mongolia-Shaanxi border region, water inrushing from roof bed, inorganic-organic indicator, machine learning, intelligent discrimination

DOI

10.12363/issn.1001-1986.24.01.0083

Reference

[1] 彭苏萍,毕银丽. 黄河流域煤矿区生态环境修复关键技术与战略思考[J]. 煤炭学报,2020,45(4):1211−1221

PENG Suping,BI Yinli. Strategic consideration and core technology about environmental ecological restoration in coal mine areas in the Yellow River basin of China[J]. Journal of China Coal Society,2020,45(4):1211−1221

[2] 王双明,申艳军,宋世杰,等. “双碳”目标下煤炭能源地位变化与绿色低碳开发[J]. 煤炭学报,2023,48(7):2599−2612

WANG Shuangming,SHEN Yanjun,SONG Shijie,et al. Change of coal energy status and green and low–carbon development under the “dual carbon” goal[J]. Journal of China Coal Society,2023,48(7):2599−2612

[3] 董书宁,姬亚东,王皓,等. 鄂尔多斯盆地侏罗纪煤田典型顶板水害防控技术与应用[J]. 煤炭学报,2020,45(7):2367−2375

DONG Shuning,JI Yadong,WANG Hao,et al. Prevention and control technology and application of roof water disaster in Jurassic coal field of Ordos Basin[J]. Journal of China Coal Society,2020,45(7):2367−2375

[4] 许峰,靳德武,杨茂林,等. 神府–东胜矿区高强度开采顶板涌水特征及防治技术[J]. 煤田地质与勘探,2022,50(2):72−80

XU Feng,JIN Dewu,YANG Maolin,et al. Characteristics of roof water inflow and control technology for high intensity mining in Dongsheng Mining Area,Shenfu Coalfield[J]. Coal Geology & Exploration,2022,50(2):72−80

[5] WU Qiang,MU Wenping,XING Yuan,et al. Source discrimination of mine water inrush using multiple methods:A case study from the Beiyangzhuang Mine,northern China[J]. Bulletin of Engineering Geology and the Environment,2019,78(1):469−482.

[6] ZENG Yifan,MEI Aoshuang,WU Qiang,et al. Double verification and quantitative traceability:A solution for mixed mine water sources[J]. Journal of Hydrology,2024,630:130725. https://doi.org/10.1016/j.jhydrol.2024.130725.

[7] 王强民,王皓,杨建,等. 西部侏罗系矿区充水含水层水文地球化学特征及矿井水来源综合识别[J]. 工程地质学报,2021,29(4):1084−1093

WANG Qiangmin,WANG Hao,YANG Jian,et al. Hydrogeochemical characteristics of main water filled aquifers and source indicators of mine water in typical Jurassic mine area of western China[J]. Journal of Engineering Geology,2021,29(4):1084−1093

[8] 曾一凡,梅傲霜,武强,等. 基于水化学场与水动力场示踪模拟耦合的矿井涌(突)水水源判识[J]. 煤炭学报,2022,47(12):4482−4494

ZENG Yifan,MEI Aoshuang,WU Qiang,et al. Source discrimination of mine water inflow or inrush using hydrochemical field and hydrodynamic field tracer simulation coupling[J]. Journal of China Coal Society,2022,47(12):4482−4494

[9] 孙文洁,杨恒,徐陈超,等. 基于多元统计分析的东欢坨矿突水水源判别研究[J]. 煤炭工程,2021,53(9):112−116

SUN Wenjie,YANG Heng,XU Chenchao,et al. Discrimination on mine water inrush source in Donghuantuo Mine based on multivariate statistical analysis[J]. Coal Engineering,2021,53(9):112−116

[10] 杨永国,黄福臣. 非线性方法在矿井突水水源判别中的应用研究[J]. 中国矿业大学学报,2007,36(3):283−286

YANG Yongguo,HUANG Fuchen. Water source determination of mine inflow based on non–linear method[J]. Journal of China University of Mining & Technology,2007,36(3):283−286

[11] 董东林,李祥,林刚,等. 突水水源的独立性权–模糊可变理论识别模型[J]. 煤田地质与勘探,2019,47(5):48−53

DONG Donglin,LI Xiang,LIN Gang,et al. Identification model of the independence right–fuzzy variable theory of water inrush source[J]. Coal Geology & Exploration,2019,47(5):48−53

[12] 董东林,张陇强,张恩雨,等. 基于PSO–XGBoost的矿井突水水源快速判识模型[J]. 煤炭科学技术,2023,51(7):72−82

DONG Donglin,ZHANG Longqiang,ZHANG Enyu,et al. A rapid identification model of mine water inrush based on PSO–XGBoost[J]. Coal Science and Technology,2023,51(7):72−82

[13] CUI Mengke,HUANG Pinghua,HU Yongsheng,et al. Application of dynamic weight in coal mine water inrush source identification[J]. Environmental Earth Sciences,2024,83(2):69. https://doi.org/10.1007/s12665-023-11398-w.

[14] 曲兴玥,施龙青. 基于Matlab因子分析及距离判别模型的矿井突水水源识别[J]. 煤炭科学技术,2018,46(8):178−182

QU Xingyue,SHI Longqing. Discrimination on mine water inrush source based on Matlab factor analysis and Distance Distinguished Model[J]. Coal Science and Technology,2018,46(8):178−182

[15] ZHANG Haitao,XU Guangquan,CHEN Xiaoqing,et al. Hydrogeochemical characteristics and groundwater inrush source identification for a multi–aquifer system in a coal mine[J]. Acta Geologica Sinica (English Edition),2019,93(6):1922−1932.

[16] DONG Donglin,ZHANG Jialun. Discrimination methods of mine inrush water source[J]. Water,2023,15(18):3237. https://doi.org/10.3390/w15183237.

[17] 韩忠,王晓丽,施龙青. PCA–BP神经网络在矿山岩溶突水水源判别中的应用研究[J]. 河南理工大学学报(自然科学版),2023,42(1):46−53

HAN Zhong,WANG Xiaoli,SHI Longqing. Study on application of PCA–BP neural network in discrimination of karst water inrush source in mine[J]. Journal of Henan Polytechnic University (Natural Science),2023,42(1):46−53

[18] 纪卓辰,丁湘,侯恩科,等. 纳林河二号煤矿涌水水源判别的PCA–Logistic方法[J]. 煤田地质与勘探,2020,48(5):97−105

JI Zhuochen,DING Xiang,HOU Enke,et al. The PCA–Logistic method for identification of water burst in Nalinhe No.2 Coal Mine[J]. Coal Geology & Exploration,2020,48(5):97−105

[19] 郝谦,武雄,穆文平,等. 基于随机森林模型判别矿井涌(突)水水源[J]. 科学技术与工程,2020,20(16):6411−6418

HAO Qian,WU Xiong,MU Wenping,et al. Groundwater source determination of mine inflow or inrush using a random forest model[J]. Science Technology and Engineering,2020,20(16):6411−6418

[20] 张石,郑东健,陈卓研. 基于改进PSO–RF算法的大坝变形预测模型[J]. 水利水电科技进展,2022,42(6):39−44

ZHANG Shi,ZHENG Dongjian,CHEN Zhuoyan. Dam deformation prediction model based on improved PSO–RF algorithm[J]. Advances in Science and Technology of Water Resources,2022,42(6):39−44

[21] 侯恩科,姚星,车晓阳,等. 基于KPCA–APSO–ELM的矿井涌水水源识别[J]. 安全与环境学报,2022,22(1):64−71

HOU Enke,YAO Xing,CHE Xiaoyang,et al. Identification method of mine water inrush sources based on KPCA–APSO–ELM[J]. Journal of Safety and Environment,2022,22(1):64−71

[22] 于小鸽,刘燚菲,翟培合. 基于PCA–AWOA–ELM模型的矿井突水水源识别[J]. 煤炭科学技术,2023,51(3):182−189

YU Xiaoge,LIU Yifei,ZHAI Peihe. Identification of mine water inrush source based on PCA–AWOA–ELM model[J]. Coal Science and Technology,2023,51(3):182−189

[23] 黄敏,毛岸,路世昌,等. 矿井突水水源识别的主成分分析–混沌麻雀搜索–RF模型[J]. 安全与环境学报,2023,23(8):2607−2614

HUANG Min,MAO An,LU Shichang,et al. Identification of mine water inrush source based on PCA–CSSA–RF model[J]. Journal of Safety and Environment,2023,23(8):2607−2614

[24] 胡友彪,琚棋定. 基于粒子群优化随机森林的煤矿涌(突)水水源机器学习识别技术[J]. 煤炭科技,2022,43(4):52−60

HU Youbiao,JU Qiding. Machine learning recognition technology of coal mine water inflow (outburst) source based on particle swarm optimization random forest[J]. Coal Science & Technology Magazine,2022,43(4):52−60

[25] 逄岩,许枫,刘佳,等. 联合特征选择与改进集成学习模型的海底底质分类[J]. 声学学报,2023,48(1):83−92

PANG Yan,XU Feng,LIU Jia,et al. Joint feature selection and improved ensemble learning model for seabed sediments classification[J]. Acta Acustica,2023,48(1):83−92

[26] 田周泰,柴梦娟,刘广怡,等. 基于改进人工鱼群算法的无人机三维航迹规划[J]. 信息工程大学学报,2024,25(1):80−84

TIAN Zhoutai,CHAI Mengjuan,LlU Guangyi,et al. Three–dimensional trajectory planning for unmanned aerial vehicles based on improved artificial fish swarm algorithm[J]. Journal of Information Engineering University,2024,25(1):80−84

[27] JIA Dongyao,LI Zhengyi,ZHANG Chuanwang. A parametric optimization oriented,AFSA based random forest algorithm:Application to the detection of cervical epithelial cells[J]. IEEE Access,2020,8:64891−64905.

[28] 李旭鹏,钟文义,乔守旭,等. 基于AFSA–RF的两相流型图扩展技术[J]. 原子能科学技术,2022,56(8):1584−1592

LI Xupeng,ZHONG Wenyi,QIAO Shouxu,et al. Prediction of two–phase flow regime based on AFSA–RF[J]. Atomic Energy Science and Technology,2022,56(8):1584−1592

[29] 王甜甜,靳德武,薛建坤,等. 蒙陕接壤区煤矿采空区水–岩系统中氟来源及释放规律[J]. 煤田地质与勘探,2023,51(2):252−262

WANG Tiantian,JIN Dewu,XUE Jiankun,et al. Source and release law of fluorine in water–rock system of coal mine goaf in contiguous area of Shaanxi and Inner Mongolia[J]. Coal Geology & Exploration,2023,51(2):252−262

[30] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 地下水质量标准:GB/T 14848—2017[S]. 北京:中国标准出版社,2017.

[31] CHEN Wen,WESTERHOFF P,LEENHEER J A,et al. Fluorescence excitation-emission matrix regional integration to quantify spectrafor dissolved organic matter[J]. Environmental Science & Technology,2023,37(24):5701−5710.

[32] 张明明,陈刚,刘耿炜,等. 基于主成分分析和水质标识指数的地下水评价[J]. 水利信息化,2021(4):47−51

ZHANG Mingming,CHEN Gang,LIU Gengwei,et al. Groundwater quality assessment based on principal component analysis and water quality identification indices[J]. Water Resources Informatization,2021(4):47−51

[33] 王冬,曲媛,刘玉航,等. 基于优化随机森林算法的乳腺癌分类诊断[J]. 计算机工程与设计,2022,43(3):706−712

WANG Dong,QU Yuan,LIU Yuhang,et al. Classification diagnosis of breast cancer based on optimized random forest algorithm[J]. Computer Engineering and Design,2022,43(3):706−712

[34] 金伟正,宋超,罗义军. 基于人工鱼群算法的电力无线专网基站选址规划[J]. 武汉大学学报(工学版),2021,54(6):551−556

JIN Weizheng,SONG Chao,LUO Yijun. Base station location planning of power wireless private network based on artificial fish swarm algorithm[J]. Engineering Journal of Wuhan University,2021,54(6):551−556

[35] PAN Ningkang,LYU Li,FAN Tanghuai,et al. A multi–objective firefly algorithm combining logistic mapping and cross–variation[J]. International Journal of Computing Science and Mathematics,2023,18(3):255−265.

[36] SUN Jing,SUN Fenglin,GONG Dunwei,et al. A mutation operator guided by preferred regions for set–based many–objective evolutionary optimization[J]. Complex & Intelligent Systems,2017,3(4):265−278.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.