Coal Geology & Exploration
Abstract
Through 30 years of unremitting explorations, coalbed methane (CBM) wells in China have gradually transitioned from vertical to horizontal wells. However, the lack of basic theories on CBM production using horizontal wells is the main challenge to current CBM development. Compared to shales, coal seams exhibit heterogeneity and a minor presence of foliations and brittle minerals, hindering the formation of volumetric fracture networks. Nevertheless, the roofs and floors of coal seams have high sealing capacities and mechanical strength, creating excellent conditions for hydraulic fracturing. Some fractures in coals are filled with calcite, rendering acidification conducive to the improvement of reservoir permeability and the formation of complex fractures. Hence, it is particularly important to develop a technology for CBM production using horizontal wells that is tailored for CBM reservoir characteristics. Targeting the geological characteristics of coal seams, this study systematically analyzed the technical and economic policies for CBM production using horizontal wells from six aspects: the optimization of the horizontal well section length and cluster spacing, the selection of fracturing fluids and proppants, flowback rate, and estimated ultimate recovery (EUR). Key findings are as follows: (1) Encouraging reservoir stimulation performance can be achieved under a horizontal well section length of 1 000 m or below and a cluster spacing ranging between 15 m and 30 m; (2) Adding slippery water gel breakers and a small quantity of low-temperature auxiliary gel breakers into fracturing fluids can improve the gel-breaking efficiency of deep CBM reservoirs; (3) Compared to middle and shallow CBM reservoirs, the ratio of proppants with large grain sizes (0.425/0.850 mm) should be increased for deep CBM reservoir fracturing; (4) Under the highest gas yield, the fracturing fluids’ flowback rate for deep CBM reservoirs (e.g., the No. 8 coal seam in the Daji block) resembles that for shale gas reservoirs in the Weiyuan-Changning area; (5) Given the low EUR but high fracturing liquid and proppant intensities of CBM production, it is necessary to improve its efficiency and economic benefits. The CBM production performance is jointly controlled by geological characteristics and engineering technologies. From the perspective of the geo-engineering integration, this study put forward the countermeasures for future CBM production using horizontal wells and proposed suggestions. Specifically, it is necessary to further optimize the technology for CBM production using horizontal wells, improve the drilling and completion technologies of horizontal wells to reduce the cost of single-well drilling and completion, achieve the orderly flowback of pulverized coal in CBM horizontal wells as per the migration pattern of pulverized coals to improve the drainage and production efficiency, and optimize the production control technologies based on free and adsorbed gases’ proportions to increase single-well EUR.
Keywords
deep coalbed methane, shale gas, production condition, reservoir comparison, horizontal well
DOI
10.12363/issn.1001-1986.23.11.0794
Recommended Citation
WANG Hongyan, DUAN Yaoyao, LIU Honglin,
et al.
(2024)
"Preliminarily exploring the theories and technologies for coalbed methane production using horizontal wells: Comparison of conditions for coalbed methane and shale gas exploitation,"
Coal Geology & Exploration: Vol. 52:
Iss.
4, Article 6.
DOI: 10.12363/issn.1001-1986.23.11.0794
Available at:
https://cge.researchcommons.org/journal/vol52/iss4/6
Reference
[1] 周德华,陈刚,陈贞龙,等. 中国深层煤层气勘探开发进展、关键评价参数与前景展望[J]. 天然气工业,2022,42(6):43−51
ZHOU Dehua,CHEN Gang,CHEN Zhenlong,et al. Exploration and development progress,key evaluation parameters and prospect of deep CBM in China[J]. Natural Gas Industry,2022,42(6):43−51
[2] DIAMOND W P,OYLER D C. Effects of stimulation treatments on coalbeds and surrounding strata:Evidence from underground observations[R]. United States Department of the Interior,1987.
[3] 门相勇,娄钰,王一兵,等. 中国煤层气产业“十三五”以来发展成效与建议[J]. 天然气工业,2022,42(6):173−178
MEN Xiangyong,LOU Yu,WANG Yibing,et al. Development achievements of China’s CBM industry since the 13th Five–Year Plan and suggestions[J]. Natural Gas Industry,2022,42(6):173−178
[4] 谢和平,鞠杨,高明忠,等. 煤炭深部原位流态化开采的理论与技术体系[J]. 煤炭学报,2018,43(5):1210−1219
XIE Heping,JU Yang,GAO Mingzhong,et al. Theories and technologies for in–situ fluidized mining of deep underground coal resources[J]. Journal of China Coal Society,2018,43(5):1210−1219
[5] 刘长华,陈国青,高宇,等. 沁水盆地深部软煤煤层气开发实践[J/OL]. 矿业安全与环保,2023:1–6 [2024-03-21]. https://kns.cnki.net/kcms/detail/50.1062.td.20230313.1725.002.html.
LIU Changhua,CHEN Guoqing,GAO Yu,et al. Development practice of deep soft coal CBM in Qinshui Basin[J/OL]. Mining Safety & Environmental Protection,2023:1–6 [2024-03-21]. https://kns.cnki.net/kcms/detail/50.1062.td.20230313.1725.002.html.
[6] 高德利,毕延森,鲜保安. 中国煤层气高效开发井型与钻完井技术进展[J]. 天然气工业,2022,42(6):1−18
GAO Deli,BI Yansen,XIAN Bao’an. Technical advances in well types and drilling & completion for high–efficient development of coalbed methane in China[J]. Natural Gas Industry,2022,42(6):1−18
[7] MENG Chunfang,DE PATER C J. Hydraulic fracture propagation in pre–fractured natural rocks[C]//SPE 140429,2011.
[8] 金智荣,孙悦铭,包敏新,等. 基于真三轴压裂物理模拟系统的暂堵压裂裂缝扩展规律试验研究[J]. 非常规油气,2021,8(6):98−105
JIN Zhirong,SUN Yueming,BAO Minxin,et al. Experimental study on crack propagation law of temporary plugging fracturing based on true triaxial fracturing physical simulation system[J]. Unconventional Oil & Gas,2021,8(6):98−105
[9] 徐凤银,王勃,赵欣,等. “双碳”目标下推进中国煤层气业务高质量发展的思考与建议[J]. 中国石油勘探,2021,26(3):9−18
XU Fengyin,WANG Bo,ZHAO Xin,et al. Thoughts and suggestions on promoting high quality development of China’s CBM business under the goal of “double carbon”[J]. China Petroleum Exploration,2021,26(3):9−18
[10] 徐凤银,侯伟,熊先钺,等. 中国煤层气产业现状与发展战略[J]. 石油勘探与开发,2023,50(4):669−682
XU Fengyin,HOU Wei,XIONG Xianyue,et al. The status and development strategy of coalbed methane industry in China[J]. Petroleum Exploration and Development,2023,50(4):669−682
[11] 邹才能,丁云宏,卢拥军,等. “人工油气藏”理论、技术及实践[J]. 石油勘探与开发,2017,44(1):144−154
ZOU Caineng,DING Yunhong,LU Yongjun,et al. Concept,technology and practice of “man–made reservoirs” development[J]. Petroleum Exploration and Development,2017,44(1):144−154
[12] CASAS L A,MISKIMINS J,BLACK A D,et al. Laboratory hydraulic fracturing test on a rock with artificial discontinuities[C]//SPE Annual Technical Conference and Exhibition. San Antonio:SPE,2006.
[13] LIU Yuzhang,CUI Mingyue,DING Yunhong,et al. Experimental investigation of hydraulic fracture propagation in acoustic monitoring inside a large–scale Polyaxial test[C]//International Petroleum Technology Conference. Beijing,2013.
[14] 陈勉,庞飞,金衍. 大尺寸真三轴水力压裂模拟与分析[J]. 岩石力学与工程学报,2000,19(增刊1):868−872
CHEN Mian,PANG Fei,JIN Yan. Experiments and analysis on hydraulic fracturing by a large–size triaxial simulator[J]. Chinese Journal of Rock Mechanics and Engineering,2000,19(Sup.1):868−872
[15] GRIFFIN L G,WRIGHT C A,DAVIS E J,et al. Surface and downhole tiltmeter mapping:An effective tool for monitoring downhole drill cuttings disposal[C]//SPE Annual Technical Conference and Exhibition. Dallas:SPE,2000.
[16] 张士诚,郭天魁,周彤,等. 天然页岩压裂裂缝扩展机理试验[J]. 石油学报,2014,35(3):496−503
ZHANG Shicheng,GUO Tiankui,ZHOU Tong,et al. Fracture propagation mechanism experiment of hydraulic fracturing in natural shale[J]. Acta Petrolei Sinica,2014,35(3):496−503
[17] GRIFFIN L G,WRIGHT C A,DEMETRIUS S L,et al. Identification and implications of induced hydraulic fractures in waterfloods:Case history HGEU[C]//SPE Permian Basin Oil and Gas Recovery Conference. Midland:SPE,2000.
[18] 付海峰,崔明月,邹憬,等. 基于声波监测技术的长庆砂岩裂缝扩展实验[J]. 东北石油大学学报,2013,37(2):96−101
FU Haifeng,CUI Mingyue,ZOU Jing,et al. Experimental study of Changqing sandstone fracture propagation based on acoustic monitoring[J]. Journal of Northeast Petroleum University,2013,37(2):96−101
[19] BEUGELSDIJK L J L,DE PATER C J,SATO K. Experimental hydraulic fracture propagation in a multi–fractured medium[C]//SPE Asia Pacific Conference on Integrated Modelling for Asset Management. Yokohama:SPE,2000.
[20] 马新华. 四川盆地南部页岩气富集规律与规模有效开发探索[J]. 天然气工业,2018,38(10):1−10
MA Xinhua. Enrichment laws and scale effective development of shale gas in the southern Sichuan Basin[J]. Natural Gas Industry,2018,38(10):1−10
[21] 王世谦,陈更生,董大忠,等. 四川盆地下古生界页岩气藏形成条件与勘探前景[J]. 天然气工业,2009,29(5):51−58
WANG Shiqian,CHEN Gengsheng,DONG Dazhong,et al. Accumulation conditions and exploitation prospect of shale gas in the Lower Paleozoic Sichuan Basin[J]. Natural Gas Industry,2009,29(5):51−58
[22] 接铭训. 鄂尔多斯盆地东缘煤层气勘探开发前景[J]. 天然气工业,2010,30(6):1−6
JIE Mingxun. Prospects in coalbed methane gas exploration and production in the eastern Ordos Basin[J]. Natural Gas Industry,2010,30(6):1−6
[23] 毕彩芹,胡志方,汤达祯,等. 煤系气研究进展与待解决的重要科学问题[J]. 中国地质,2021,48(2):402−423
BI Caiqin,HU Zhifang,TANG Dazhen,et al. Research progress of coal measure gas and some important scientific problems[J]. Geology in China,2021,48(2):402−423
[24] 米立军,朱光辉. 鄂尔多斯盆地东北缘临兴–神府致密气田成藏地质特征及勘探突破[J]. 中国石油勘探,2021,26(3):53−67
MI Lijun,ZHU Guanghui. Geological characteristics and exploration breakthrough in Linxing–Shenfu tight gas field,northeastern Ordos Basin[J]. China Petroleum Exploration,2021,26(3):53−67
[25] 刘大锰,贾奇锋,蔡益栋. 中国煤层气储层地质与表征技术研究进展[J]. 煤炭科学技术,2022,50(1):196−203
LIU Dameng,JIA Qifeng,CAI Yidong. Research progress on coalbed methane reservoir geology and characterization technology in China[J]. Coal Science and Technology,2022,50(1):196−203
[26] 陈尚斌,朱炎铭,王红岩,等. 川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J]. 煤炭学报,2012,37(3):438−444
CHEN Shangbin,ZHU Yanming,WANG Hongyan,et al. Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin[J]. Journal of China Coal Society,2012,37(3):438−444
[27] 范俊佳,柳少波,张喜,等. 不同变质变形煤特征对煤层气富集渗流的制约[J]. 科学技术与工程,2013,13(25):7468−7471
FAN Junjia,LIU Shaobo,ZHANG Xi,et al. Characterization of different metamorphic–deformed coals and its restriction on coalbed methane accumulation and flow[J]. Science Technology and Engineering,2013,13(25):7468−7471
[28] 申宝剑,仰云峰,腾格尔,等. 四川盆地焦石坝构造区页岩有机质特征及其成烃能力探讨:以焦页1井五峰–龙马溪组为例[J]. 石油实验地质,2016,38(4):480−488
SHEN Baojian,YANG Yunfeng,TENGER,et al. Characteristics and hydrocarbon significance of organic matter in shale from the Jiaoshiba structure,Sichuan Basin:A case study of the Wufeng–Longmaxi formations in well Jiaoye1[J]. Petroleum Geology & Experiment,2016,38(4):480−488
[29] 程远方,徐太双,吴百烈,等. 煤岩水力压裂裂缝形态实验研究[J]. 天然气地球科学,2013,24(1):134−137
CHENG Yuanfang,XU Taishuang,WU Bailie,et al. Experimental study on the hydraulic fractures’ morphology of coal bed[J]. Natural Gas Geoscience,2013,24(1):134−137
[30] 鲜保安,高德利,王一兵,等. 多分支水平井在煤层气开发中的应用机理分析[J]. 煤田地质与勘探,2005,33(6):34−37
XIAN Bao’an,GAO Deli,WANG Yibing,et al. Analysis on applied mechanism of multiple laterals horizontal well in developing coalbed methane[J]. Coal Geology & Exploration,2005,33(6):34−37
[31] 张群,葛春贵,李伟,等. 碎软低渗煤层顶板水平井分段压裂煤层气高效抽采模式[J]. 煤炭学报,2018,43(1):150−159
ZHANG Qun,GE Chungui,LI Wei,et al. A new model and application of coalbed methane high efficiency production from broken soft and low permeable coal seam by roof strata–in horizontal well and staged hydraulic fracture[J]. Journal of China Coal Society,2018,43(1):150−159
[32] 付玉通. 延川南深部煤层气地质特征与水平井开发技术地质适配性研究[D]. 徐州:中国矿业大学,2018.
FU Yutong. Study on geological characteristics of the deep CBM and adaptability of horizontal well development techniques with them in the southern Yanchuan Block[D]. Xuzhou:China University of Mining and Technology,2018.
[33] 孟召平,田永东,李国富. 沁水盆地南部地应力场特征及其研究意义[J]. 煤炭学报,2010,35(6):975−981
MENG Zhaoping,TIAN Yongdong,LI Guofu. Characteristics of in–situ stress field in southern Qinshui Basin and its research significance[J]. Journal of China Coal Society,2010,35(6):975−981
[34] 张遂安,刘欣佳,温庆志,等. 煤层气增产改造技术发展现状与趋势[J]. 石油学报,2021,42(1):105−118
ZHANG Sui’an,LIU Xinjia,WEN Qingzhi,et al. Development situation and trend of stimulation and reforming technology of coalbed methane[J]. Acta Petrolei Sinica,2021,42(1):105−118
[35] 叶建平,杨兆中,夏日桂,等. 深煤层水力波及压裂技术及其在沁南地区的应用[J]. 天然气工业,2017,37(10):35−45
YE Jianping,YANG Zhaozhong,XIA Rigui,et al. Synchronous hydraulic conformance fracturing technology used for deep coal beds and its field application in the southern Qinshui Basin[J]. Natural Gas Industry,2017,37(10):35−45
[36] 李鹏钺. 煤层顶板压裂裂缝延伸机理及分段分簇优化研究[D]. 北京:中国石油大学(北京),2021.
LI Pengyue. Study on fracture propagation mechanism and optimization of segmentation and clustering of fracturing in roof of coal seams[D]. Beijing:China University of Petroleum (Beijing),2021.
[37] 郭志企. 煤层气水平井分段多簇密集压裂技术与工艺优化:以大宁区块高阶低渗煤储层为例[D]. 徐州:中国矿业大学,2022.
GUO Zhiqi. Sectional multi–cluster intensive fracturing and process optimization of CBM horizontal well:A case study of high–rank and low permeability coal reservoir in Daning,Shanxi,China[D]. Xuzhou:China University of Mining and Technology,2022.
[38] 陈天,易远元,李甜甜,等. 中国煤层气勘探开发现状及关键技术展望[J]. 现代化工,2023,43(9):6−10
CHEN Tian,YI Yuanyuan,LI Tiantian,et al. Current situation of CBM exploration and development in China and prospects on key technologies[J]. Modern Chemical Industry,2023,43(9):6−10
[39] 徐凤银,闫霞,李曙光,等. 鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策[J]. 煤田地质与勘探,2023,51(1):115−130
XU Fengyin,YAN Xia,LI Shuguang,et al. Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos Basin[J]. Coal Geology & Exploration,2023,51(1):115−130
[40] 张道勇,朱杰,赵先良,等. 全国煤层气资源动态评价与可利用性分析[J]. 煤炭学报,2018,43(6):1598−1604
ZHANG Daoyong,ZHU Jie,ZHAO Xianliang,et al. Dynamic assessment of coalbed methane resources and availability in China[J]. Journal of China Coal Society,2018,43(6):1598−1604
[41] 李国璋. 煤系气合采产层贡献及其预测模型:以鄂尔多斯盆地临兴–神府地区为例[D]. 北京:中国矿业大学 (北京),2020.
LI Guozhang. Contribution and its prediction model of production strata for joint CMG mining:A case from Linxing–Shenfu area in Ordos Basin,China[D]. Beijing:China University of Mining and Technology (Beijing),2020.
[42] 闫霞,徐凤银,张雷,等. 微构造对煤层气的控藏机理与控产模式[J]. 煤炭学报,2022,47(2):893−905
YAN Xia,XU Fengyin,ZHANG Lei,et al. Reservoir–controlling mechanism and production–controlling patterns of microstructure to coalbed methane[J]. Journal of China Coal Society,2022,47(2):893−905
[43] 马新华,谢军,陈更生,等. 四川长宁–威远国家级页岩气示范区建设关键技术[R]. 四川:中国石油天然气股份有限公司西南油气田分公司工程技术研究院,2016-05-14.
[44] 米洪刚,朱光辉,赵卫,等. 沁水盆地潘庄煤层气田地质工程一体化应用实践[J]. 中国石油勘探,2022,27(1):120−126
MI Honggang,ZHU Guanghui,ZHAO Wei,et al. Application practice of geology and engineering integration in Panzhuang CBM Field,Qinshui Basin[J]. China Petroleum Exploration,2022,27(1):120−126
[45] 徐凤银,闫霞,林振盘,等. 我国煤层气高效开发关键技术研究进展与发展方向[J]. 煤田地质与勘探,2022,50(3):1−14
XU Fengyin,YAN Xia,LIN Zhenpan,et al. Research progress and development direction of key technologies for efficient coalbed methane development in China[J]. Coal Geology & Exploration,2022,50(3):1−14
[46] 徐凤银,肖芝华,陈东,等. 我国煤层气开发技术现状与发展方向[J]. 煤炭科学技术,2019,47(10):205−215
XU Fengyin,XIAO Zhihua,CHEN Dong,et al. Current status and development direction of coalbed methane exploration technology in China[J]. Coal Science and Technology,2019,47(10):205−215
[47] WANG Xin,ZHU Qingzhong,ZHENG Wei,et al. Improving the effective supporting and fracturing technology is the key to the successful stimulation of low–permeability and low–rank coalbed methane reservoirs[C]//International Petroleum Technology Conference. Beijing,2019.
[48] 孙钦平,赵群,姜馨淳,等. 新形势下中国煤层气勘探开发前景与对策思考[J]. 煤炭学报,2021,46(1):65−76
SUN Qinping,ZHAO Qun,JIANG Xinchun,et al. Prospects and strategies of CBM exploration and development in China under the new situation[J]. Journal of China Coal Society,2021,46(1):65−76
[49] 徐继发,王升辉,孙婷婷,等. 世界煤层气产业发展概况[J]. 中国矿业,2012,21(9):24−28
XU Jifa,WANG Shenghui,SUN Tingting,et al. The introduction of world CBM development[J]. China Mining Magazine,2012,21(9):24−28
[50] 罗平亚. 关于大幅度提高我国煤层气井单井产量的探讨[J]. 天然气工业,2013,33(6):1−6
LUO Pingya. A discussion on how to significantly improve the single–well productivity of CBM gas wells in China[J]. Natural Gas Industry,2013,33(6):1−6
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons