•  
  •  
 

Coal Geology & Exploration

Abstract

Tar-rich coals are a coal-based oil and gas resource that integrates the properties of coal, oil, and gas. Given China's energy endowment of abundant coal resources but limited oil and gas reserves, exploiting tar-rich coals plays a significant role in alleviating China's tight supply of oil and gas resources and achieving green development and low-carbon utilization of coals. Using tar-rich coals as the keyword, we searched the CNKI and Web of Science databases for academic articles and patents published from 1985 to the end of 2023. Based on the search results, we statistically analyzed the process and main aspects of research on tar-rich coals, sorting out the academic interests and frontier fields and forecasting future trends. Findings reveal that the current academic interests in research on tar-rich coals focus on their pyrolysis, occurrence characteristics, sedimentary environments, pore and molecular structures, tar yield forecast, microbial degradation, resource potential, and production and utilization. Tar-rich coals contain hydrogen-rich structures that can produce oil and gas through pyrolysis, such as the side chains and bridge bonds of aliphatic structures and weakly bonded structures on the periphery of condensed aromatic nucleus. Tar-rich coals were predominantly formed in sedimentary environments with a stable terrestrial sediment supply, a warm and humid climate, and strong reducing conditions. Pore structures influence the pyrolysis efficiency, tar precipitation, and hydrocarbon migration of tar-rich coals, whereas molecular structures (primarily influenced by aliphatic hydrogen content and weak hydrogenated bonds) determine the oil-generating potential of tar-rich coals. Tar-rich coals convert into oil and gas through four stages under biodegradation: microbial hydrolysis, fermentation, hydrogen/acetic acid generation, and methane generation. With the achievement of technical breakthroughs in geological area selection and the integration of multiple disciplines, future trends in research on tar-rich coals will center on the indicators and methods for forecasting and evaluating their oil-yield property, the sources and quantitative identification of hydrogen-rich components, the sealing performance of surrounding rocks and its evaluation methods for in-situ exploitation, and technologies for microbial degradation combined with pyrolysis. The results of this study will lay a foundation for ascertaining both current directions and future trends of research on tar-rich coals.

Keywords

tar-rich coal, in-situ pyrolysis, hydrogenous structure, research progress, prospect, literature statistics

DOI

10.12363/issn.1001-1986.23.07.0430

Reference

[1] 武强,涂坤,曾一凡,等. 打造我国主体能源(煤炭)升级版面临的主要问题与对策探讨[J]. 煤炭学报,2019,44(6):1625−1636

WU Qiang,TU Kun,ZENG Yifan,et al. Discussion on the main problems and countermeasures for building an upgrade version of main energy (coal) industry in China[J]. Journal of China Coal Society,2019,44(6):1625−1636

[2] 王双明. 对我国煤炭主体能源地位与绿色开采的思考[J]. 中国煤炭,2020,46(2):11−16

WANG Shuangming. Thoughts about the main energy status of coal and green mining in China[J]. China Coal,2020,46(2):11−16

[3] 王国法,任世华,庞义辉,等. 煤炭工业“十三五”发展成效与“双碳”目标实施路径[J]. 煤炭科学技术,2021,49(9):1−8

WANG Guofa,REN Shihua,PANG Yihui,et al. Development achievements of China’s coal industry during the 13th Five–Year Plan period and implementation path of “dual carbon” target[J]. Coal Science and Technology,2021,49(9):1−8

[4] 中国石油集团经济技术研究院. 2022年国内外油气行业发展报告[M]. 北京:石油工业出版社,2023.

[5] 鲍园,李争岩,安超,等. 多手段表征富油煤微生物厌氧发酵孔隙结构变化特征及机制[J]. 煤炭学报,2023,48(2):891−899

BAO Yuan,LI Zhengyan,AN Chao,et al. Multi–method characterization of pore structure evolution characteristics and mechanism of tar–rich coal by anaerobic fermentation[J]. Journal of China Coal Society,2023,48(2):891−899

[6] FAN Jinwen,DU Meili,LIU Lei,et al. Macerals particle characteristics analysis of tar–rich coal in northern Shaanxi based on image segmentation models via the U–Net variants and image feature extraction[J]. Fuel,2023,341:127757.

[7] 王双明,王虹,任世华,等. 西部地区富油煤开发利用潜力分析和技术体系构想[J]. 中国工程科学,2022,24(3):49−57

WANG Shuangming,WANG Hong,REN Shihua,et al. Potential analysis and technical conception of exploitation and utilization of tar–rich coal in western China[J]. Strategic Study of CAE,2022,24(3):49−57

[8] 王双明,师庆民,王生全,等. 富油煤的油气资源属性与绿色低碳开发[J]. 煤炭学报,2021,46(5):1365−1377

WANG Shuangming,SHI Qingmin,WANG Shengquan,et al. Resource property and exploitation concepts with green and low–carbon of tar–rich coal as coal–based oil and gas[J]. Journal of China Coal Society,2021,46(5):1365−1377

[9] JU Yang,ZHU Yan,ZHOU Hongwei,et al. Microwave pyrolysis and its applications to the in situ recovery and conversion of oil from tar–rich coal:An overview on fundamentals,methods,and challenges[J]. Energy Reports,2021,7:523−536.

[10] 薛文海,杜美利,刘忠诚,等. 萃取方式对黄陵煤分子结构特征影响[J]. 洁净煤技术,2022,28(7):96−102

XUE Wenhai,DU Meili,LIU Zhongcheng,et al. Effects of extraction methods on molecular structure characteristics of Huangling coal[J]. Clean Coal Technology,2022,28(7):96−102

[11] 《矿产资源工业要求手册》编委会. 矿产资源工业要求手册(2014年修订本)[M]. 北京:地质出版社,2014.

[12] 许婷,李宁,姚征. 榆横矿区3#煤层富油煤的煤岩煤质及成煤环境[J]. 煤炭技术,2022,41(7):82−85

XU Ting,LI Ning,YAO Zheng. Petrography and quality characteristics and coal forming environment of tar–rich coal in No. 3 coal seam of Yuheng Mining Area[J]. Coal Technology,2022,41(7):82−85

[13] 师庆民,王双明,王生全,等. 神府南部延安组富油煤多源判识规律[J]. 煤炭学报,2022,47(5):2057−2066

SHI Qingmin,WANG Shuangming,WANG Shengquan,et al. Multi–source identification and internal relationship of tar–rich coal of the Yan’an Formation in the south of Shenfu[J]. Journal of China Coal Society,2022,47(5):2057−2066

[14] 申艳军,王旭,赵春虎,等. 榆神府矿区富油煤多尺度孔隙结构特征[J]. 煤田地质与勘探,2021,49(3):33−41

SHEN Yanjun,WANG Xu,ZHAO Chunhu,et al. Experimental study on multi–scale pore structure characteristics of tar–rich coal in Yushenfu Mining Area[J]. Coal Geology & Exploration,2021,49(3):33−41

[15] JU Yang,ZHU Yan,ZHANG Yuwei,et al. Effects of high–power microwave irradiation on tar–rich coal for realising in situ pyrolysis,fragmentation,and low–carbon utilisation of tar–rich coal[J]. International Journal of Rock Mechanics and Mining Sciences,2022,157:105165.

[16] THIESSEN R. Origin of the boghead coals[R]. USGS Numbered Series,1925,132:121–137.

[17] 胡社荣. 煤造石油与煤成油理论关系研究进展综述[J]. 地质科技情报,1999,18(4):71−73

HU Sherong. Overview of some advances in research on relationship between coal liquefaction and theory of oil from coal[J]. Geological Science and Technology Information,1999,18(4):71−73

[18] CLAYTON J L,RICE D D,MICHAEL G E. Oil–generating coals of the San Juan Basin,New Mexico and Colorado,U. S. A[J]. Organic Geochemistry,1991,17(6):735−742.

[19] 吴俊. 中国南方龙潭煤系树皮煤岩石学特征及成烃性研究[J]. 中国科学(B辑 化学 生命科学 地学),1992(1):86−93

WU Jun. Petrological characteristics and hydrocarbon formation of bark coal in Longtan coal system in southern China[J]. Science in China(Series B,Chemistry,Life Sciences,Geoscience),1992(1):86−93

[20] 王士俊,刘咸卫,宋丽君. 乐平煤的成煤植物及树皮体的起源[J]. 煤炭学报,1998,23(3):231−235

WANG Shijun,LIU Xianwei,SONG Lijun. The coal–forming plants of lopinite and genesis of barkinite[J]. Journal of China Coal Society,1998,23(3):231−235

[21] 张井,唐家祥,郑雪萍,等. 华南晚二叠世“树皮煤”的煤岩特征及沉积环境[J]. 中国矿业大学学报,1998,27(2):176−180

ZHANG Jing,TANG Jiaxiang,ZHENG Xueping,et al. Petrographic characteristics and depositional environment of upper permian “Bark Coals” in south China[J]. Journal of China University of Mining and Technology,1998,27(2):176−180

[22] 郭亚楠,赵博,解锡超,等. 华南晚二叠世树皮煤的煤相特征及对比研究[J]. 中国煤炭地质,2009,21(12):19−23

GUO Yanan,ZHAO Bo,XIE Xichao,et al. Coal facies features and comparative study of southern China Late Permian bark coal[J]. Coal Geology of China,2009,21(12):19−23

[23] 韩德馨,任德贻,郭敏泰. 浙江长广煤田树皮残植煤的成因及其沉积环境[J]. 沉积学报,1983,1(4):1−14

HAN Dexin,REN Deyi,GUO Mintai. Origin of bark liptobiolite and its depositional environment of Changguang Coalfield,Zhejiang Province[J]. Acta Sedimentologica Sinica,1983,1(4):1−14

[24] 陈其奭. 中国南方龙潭植物群及乐平煤的沉积环境[J]. 南方油气地质,1995,1(2):28−33

CHEN Qishi. Sedimentary environments of Longtan plant group and Leping coal in southern China[J]. Southern Oil and Gas Geology,1995,1(2):28−33

[25] 余海洋,孙旭光,焦宗福. 华南晚二叠世/树皮体0显微傅里叶红外光谱(Micro–FTIR)特征及意义[J]. 北京大学学报(自然科学版),2004,40(6):879−885.

YU Haiyang,SUN Xuguang,JIAO Zongfu. Characteristics and implications of Micro–FTIR spectroscopy of "barkinite" from Upper Permian Coals,south China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2004,40(6):879−885.

[26] 赵存良,孙玉壮. 安徽省金山煤矿晚二叠世树皮煤的地球化学特征[J]. 河北工程大学学报(自然科学版),2007,24(4):60−62

ZHAO Cunliang,SUN Yuzhuang. Geochemistry of the barkinite liptobiolith (Late Permian) from the Jinshan Mine,Anhui Province[J]. Journal of Hebei University of Engineering (Natural Science Edition),2007,24(4):60−62

[27] 王绍清,唐跃刚,SCHOBERT H H,等. 富含树皮体和半丝质体煤的液化反应性和13C–核磁共振分析的研究[J]. 燃料化学学报,2010,38(2):129−133

WANG Shaoqing,TANG Yuegang,SCHOBERT H H,et al. Liquefaction reactivity and 13C–NMR of coals rich in barkinite and semi–fusinite[J]. Journal of Fuel Chemistry and Technology,2010,38(2):129−133

[28] 张爱云,翁成敏,蔡云开. 中国南方树皮煤的生油潜力[J]. 地学前缘,1999,6(增刊1):209−215

ZHANG Aiyun,WENG Chengmin,CAI Yunkai. The petroleum–generating potential of bark coal in south China[J]. Earth Science Frontiers,1999,6(Sup.1):209−215

[29] 吴俊. 我国南方龙潭煤系镜亮煤、藻烛煤、树皮煤成烃规律研究[J]. 中国煤田地质,1993,5(2):23−27

WU Jun. A study on the hydrocarbon formation regularity of jingliang coal,algae candle coal,and bark coal in the Longtan coal measures of southern China[J]. Coal Geology of China,1993,5(2):23−27

[30] 周松源,徐克定,杨斌,等. 南鄱阳坳陷龙潭组树皮煤生烃潜力及油气成藏[J]. 石油与天然气地质,2006,27(1):17−22

ZHOU Songyuan,XU Keding,YANG Bin,et al. Hydrocarbon generating potential of bark coal in Longtan Fm and oil and gas reservoiring in southern Poyang deprsssion[J]. Oil & Gas Geology,2006,27(1):17−22

[31] 傅家谟,盛国英,陈德玉,等. 一种可能的煤成油母质:泥炭藓煤的有机地球化学特征[J]. 地球化学,1987(1):1−9

FU Jiamo,SHENG Guoying,CHEN Deyu,et al. Geochemical characteristics of sphagnum brown coal:A possible oil–generating precursor[J]. Geochimeca,1987(1):1−9

[32] 李贤庆,赵师庆. 苏鲁一带不同还原型镜质组的显微岩石学特征及其生烃潜力[J]. 石油与天然气地质,1995,16(1):22−30

LI Xianqing,ZHAO Shiqing. Micropetrological characteristics and hydrocarbon–generating potential of different reducting type vitrinite in Jiangsu–Shandong[J]. Oil & Gas Geology,1995,16(1):22−30

[33] 刘德汉,傅家谟,秦建中,等. 苏桥地区残殖煤的发现:兼论煤成气、煤成油的判别和我国煤成油的前景[J]. 地球化学,1985(4):313−322

LIU Dehan,FU Jiamo,QIN Jianzhong,et al. The discovery of lipitobiolites in Suqiao Region:On the determination of coal–generating gases and coalgenerating oils and their prospects[J]. Geochimica,1985(4):313−322

[34] 赵师庆,吴观茂. 论富氢镜质组型腐殖煤:生油煤的一种新类型[J]. 中国煤田地质,1995,7(1):77−81

ZHAO Shiqing,WU Guanmao. On the humic coal of hydrogen–rich vitrinite type:A new type of oil–prone coals[J]. Coal Geology of China,1995,7(1):77−81

[35] 孙永革,朱进,徐华,等. 生油煤形成的环境制约[J]. 地球化学,2002,31(1):8−14

SUN Yongge,ZHU Jin,XU Hua,et al. Environmental constraints on oil–generating coals[J]. Geochimica,2002,31(1):8−14

[36] 吴俊,金奎励,汪昆华,等. 南方树皮煤红外光谱特征及成烃演化规律研究[J]. 煤田地质与勘探,1990,18(5):29−36

WU Jun,JIN Kuili,WANG Kunhua,et al. Study on the infrared spectral characteristics and hydrocarbon formation evolution of southern bark coal[J]. Coal Geology & Exploration,1990,18(5):29−36

[37] 张军营,李太任,刘秀卿. 藻煤、烛媒、腐植煤共生煤层的有机地球化学特征及成烃评价[J]. 山西矿业学院学报,1994,12(1):71−77

ZHANG Junying,LI Tairen,LIU Xiuqing. The organic geochemical character of the intergrown coal–seam composed of boghead coal,cannel coal and humic coal,and its effect on the formation of hydrocarbon[J]. Shanxi Mining Institute Learned Journal,1994,12(1):71−77

[38] 陆杰,张秀仪,盛国英,等. 一种良好的煤成油、煤成气的母质类型:泥炭藓煤热模拟有机地球化学特征[J]. 中国科学(B辑),1988(9):995−1001

LU Jie,ZHANG Xiuyi,SHENG Guoying,et al. A good parent material type of coal–formed oil and coal–formed gas:Peat moss coal thermal simulation organic geochemical characteristics[J]. Science in China (Series B),1988(9):995−1001

[39] 马丽,拓宝生. 陕西富油煤资源量居全国之首榆林可“再造一个大庆油田”[J]. 陕西煤炭,2020,39(1):220

MA Li,TUO Baosheng. Shaanxi has the largest amount of oil–rich coal resources in the country. Yulin can “recreate a Daqing oilfield”[J]. Shaanxi Coal,2020,39(1):220

[40] 中国工程院咨询研究项目“西部富油煤开发战略研究”启动会在北京召开[EB/OL]. (2020-06-09) [2024-03-19]. https://www.cae.cn/cae/html/main/col84/2020–06/09/20200609142517491908050_1. html.

[41] ZHAO Hongyu,LI Yuhuan,SONG Qiang,et al. Investigation on the thermal behavior characteristics and products composition of four pulverized coals:Its potential applications in coal cleaning[J]. International Journal of Hydrogen Energy,2019,44(42):23620−23638.

[42] 邹卓,张莉,孙杰,等. 富油煤热解技术及利用前景研究[J]. 中国煤炭地质,2022,34(11):31−34

ZOU Zhuo,ZHANG Li,SUN Jie,et al. Study on pyrolysis technology and utilization prospect of oil–rich coal[J]. Coal Geology of China,2022,34(11):31−34

[43] 刘淑琴,畅志兵,刘金昌. 深部煤炭原位气化开采关键技术及发展前景[J]. 矿业科学学报,2021,6(3):261−270

LIU Shuqin,CHANG Zhibing,LIU Jinchang. Key technologies and prospect for in–situ gasification mining of deep coal resources[J]. Journal of Mining Science and Technology,2021,6(3):261−270

[44] 孙友宏,郭威,邓孙华. 油页岩地下原位转化与钻采技术现状及发展趋势[J]. 钻探工程,2021,48(1):57−67

SUN Youhong,GUO Wei,DENG Sunhua. The status and development trend of in–situ conversion and drilling exploitation technology for oil shale[J]. Drilling Engineering,2021,48(1):57−67

[45] NGUYEN M,BERNDT C,REICHEL D,et al. Pyrolysis behaviour study of a tar– and sulphur–rich brown coal and GC–FID/MS analysis of its tar[J]. Journal of Analytical and Applied Pyrolysis,2015,115:194−202.

[46] 陈美静,漆博文,王长安,等. 富油煤地下原位热解余热利用过程数值模拟[J]. 洁净煤技术,2023,29(1):48−58

CHEN Meijing,QI Bowen,WANG Chang’an,et al. Numerical simulation of waste heat utilization process after in–situ pyrolysis of tar–rich coal[J]. Clean Coal Technology,2023,29(1):48−58

[47] 马丽,王双明,段中会,等. 陕西省富油煤资源潜力及开发建议[J]. 煤田地质与勘探,2022,50(2):1−8

MA Li,WANG Shuangming,DUAN Zhonghui,et al. Potential of oil–rich coal resources in Shaanxi Province and its new development suggestion[J]. Coal Geology & Exploration,2022,50(2):1−8

[48] 姚征,罗乾周,李宁,等. 陕北石炭–二叠纪富油煤赋存特征及影响因素[J]. 煤田地质与勘探,2021,49(3):50−61

YAO Zheng,LUO Qianzhou,LI Ning,et al. Occurrence characteristics of Carboniferous–Permian tar–rich coal and its influencing factors in northern Shaanxi[J]. Coal Geology & Exploration,2021,49(3):50−61

[49] 高文博,冯烁,田继军,等. 三塘湖煤田汉水泉矿区富油煤赋存特征及沉积环境分析[J]. 煤炭工程,2022,54(10):136−140

GAO Wenbo,FENG Shuo,TIAN Jijun,et al. Occurrence characteristics and sedimentary environment of oil–rich coal in Hanshuiquan mining area of Santanghu Coalfield[J]. Coal Engineering,2022,54(10):136−140

[50] 王锐,夏玉成,马丽. 榆神矿区富油煤赋存特征及其沉积环境研究[J]. 煤炭科学技术,2020,48(12):192−197

WANG Rui,XIA Yucheng,MA Li. Study on oil–rich coal occurrence characteristics and sedimentary environment in Yushen Mining Area[J]. Coal Science and Technology,2020,48(12):192−197

[51] 杨甫,段中会,马丽,等. 陕西省富油煤分布及受控地质因素[J]. 煤炭科学技术,2023,51(3):171−181

YANG Fu,DUAN Zhonghui,MA Li,et al. Distribution and controlled geological factors of oil–rich coal in Shaanxi Province[J]. Coal Science and Technology,2023,51(3):171−181

[52] SHI Qingmin,LI Chunhao,WANG Shuangming,et al. Effect of the depositional environment on the formation of tar–rich coal:A case study in the northeastern Ordos Basin,China[J]. Journal of Petroleum Science and Engineering,2022,216:110828.

[53] 敖卫华,黄文辉,姚艳斌. 鄂尔多斯盆地北部煤系有机显微组分特征与生烃潜力[J]. 吉林大学学报(地球科学版),2011,41(增刊1):91−97

AO Weihua,HUANG Wenhui,YAO Yanbin. Macerals’ characteristics and hydrocarbon generation potential of coal–bearing series in the northern Ordos Basin[J]. Journal of Jilin University (Earth Science Edition),2011,41(Sup.1):91−97

[54] 李华兵,李宁,姚征,等. 陕北三叠纪煤田子长矿区瓦窑堡组特高焦油产率煤富集规律分析[J]. 中国煤炭地质,2021,33(1):22−25

LI Huabing,LI Ning,YAO Zheng,et al. Study on Wayaobu Formation extra–high tar yield coal enrichment pattern in Zichang Mining Area,northern Shaanxi triassic coalfield[J]. Coal Geology of China,2021,33(1):22−25

[55] 杨海平,陈汉平,鞠付栋,等. 热解温度对神府煤热解与气化特性的影响[J]. 中国电机工程学报,2008,28(8):40−45

YANG Haiping,CHEN Hanping,JU Fudong,et al. Influence of temperature on coal pyrolysis and char gasification[J]. Proceedings of the CSEE,2008,28(8):40−45

[56] WEN Hu,LU Junhui,XIAO Yang,et al. Temperature dependence of thermal conductivity,diffusion and specific heat capacity for coal and rocks from coalfield[J]. Thermochimica Acta,2015,619:41−47.

[57] SHI Qingmin,LI Chunhao,WANG Shuangming,et al. Variation of molecular structures affecting tar yield:A comprehensive analysis on coal ranks and depositional environments[J]. Fuel,2023,335:127050.

[58] SOLOMON P R,FLETCHER T H,PUGMIRE R J. Progress in coal pyrolysis[J]. Fuel,1993,72(5):587−597.

[59] SOLOMON P R,HAMBLEN D G,CARANGELO R M,et al. General model of coal devolatilization[J]. Energy & Fuels,1988,2(4):405−422.

[60] LIU Peng,ZHANG Dexiang,WANG Lanlan,et al. The structure and pyrolysis product distribution of lignite from different sedimentary environment[J]. Applied Energy,2016,163:254−262.

[61] LI Xiaohong,XUE Yanli,FENG Jie,et al. Co–pyrolysis of lignite and Shendong coal direct liquefaction residue[J]. Fuel,2015,144:342−348.

[62] WANG Zhendong,JIANG Pengfei,YANG Fu,et al. Study on pore structure and fractal characteristics of tar–rich coal during pyrolysis by mercury intrusion porosimetry (MIP)[J]. Geofluids,2022,2022:2067228.

[63] 师庆民,米奕臣,王双明,等. 富油煤热解流体滞留特征及其机制[J]. 煤炭学报,2022,47(3):1329−1337

SHI Qingmin,MI Yichen,WANG Shuangming,et al. Trap characteristic and mechanism of volatiles during pyrolysis of tar–rich coal[J]. Journal of China Coal Society,2022,47(3):1329−1337

[64] 蔡昕原,申文盛,马丽,等. 表面活性剂对陕北富油煤微生物降解的影响[J]. 西安科技大学学报,2022,42(2):317−323

CAI Xinyuan,SHEN Wensheng,MA Li,et al. Effects of surfactants on microbial degradation of tar–rich coals from northern Shaanxi[J]. Journal of Xi’an University of Science and Technology,2022,42(2):317−323

[65] STRĄPOĆ D,MASTALERZ M,DAWSON K,et al. Biogeochemistry of microbial coal–bed methane[J]. Annual Review of Earth & Planetary Sciences,2011,39(1):617−656.

[66] 尚煜超,刘向荣,石晨,等. 郭家沟富油煤细菌降解产腐殖酸研究[J]. 中国煤炭,2023,49(1):89−99

SHANG Yuchao,LIU Xiangrong,SHI Chen,et al. Study on the production of humic acid by bacterial degradation of Guojiagou oil–rich coal[J]. China Coal,2023,49(1):89−99

[67] 闫和平,段中会,王金锋. 黄陵矿区富油煤焦油产率与补偿密度关系模型预测方法研究[J]. 中国煤炭地质,2022,34(10):25−30

YAN Heping,DUAN Zhonghui,WANG Jinfeng. Study on the relationship model between oil–rich coal tar yield and compensation density in Huangling mining area[J]. Coal Geology of China,2022,34(10):25−30

[68] 赵军龙,闫和平,王金锋,等. 基于测井信息的煤焦油产率预测方法研究[J]. 地球物理学进展,2023,38(4):1702−1712

ZHAO Junlong,YAN Heping,WANG Jinfeng,et al. Research on coal tar productivity prediction method based on logging information[J]. Progress in Geophysics,2023,38(4):1702−1712

[69] 师庆民,耿旭虎,王双明,等. 基于煤体真密度和自然伽马响应规律的富油煤判识[J/OL]. 煤田地质与勘探,2023:1–11 [2024-03-19]. http://kns.cnki.net/kcms/detail/61.1155.p.20231129.1114.002.html.

SHI Qingmin,GENG Xuhu,WANG Shuangming,et al. Identification of tar–rich coal based on true density and natural gamma response[J/OL]. Coal Geology & Exploration,2023:1–11 [2024-03-19]. http://kns.cnki.net/kcms/detail/61.1155.p.20231129.1114.002.html.

[70] 晁伟,苏展,李东涛,等. 一种预测煤焦油产率的新方法[J]. 煤炭转化,2011,34(2):64−68

CHAO Wei,SU Zhan,LI Dongtao,et al. A new method to anticipate the coal tar yield[J]. Coal Conversion,2011,34(2):64−68

[71] 王双明,刘浪,朱梦博,等. “双碳”目标下煤炭绿色低碳发展新思路[J/OL]. 煤炭学报,2023:1–21 [2024-03-19]. https://doi.org/10.13225/j.cnki.jccs.YH23.1690.

WANG Shuangming,LIU Lang,ZHU Mengbo,et al. New way for green and low–carbon development of coal under the target of “double carbon”[J/OL]. Journal of China Coal Society,2023:1–21 [2024-03-19]. https://doi.org/10.13225/j.cnki.jccs.YH23.1690.

[72] 李文均,蒋宏忱. 地质微生物学:一门新兴的交叉学科[J]. 微生物学报,2018,58(4):521−523

LI Wenjun,JIANG Hongchen. Geomicrobiology:A new interdisciplinary subject[J]. Acta Microbiologica Sinica,2018,58(4):521−523

[73] 蒋辉. 环境地质学[M]. 北京:化学工业出版社,2008.

[74] 王双明,孙强,谷超,等. 煤炭开发推动地学研究发展[J]. 中国煤炭,2024,50(1):2−8

WANG Shuangming,SUN Qiang,GU Chao,et al. The development of geoscientific research promoted by coal exploitation[J]. China Coal,2024,50(1):2−8

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.