Coal Geology & Exploration
Abstract
Multi-electrode resistivity method is equipped with various electrode array configurations. Due to their different electrode arrangements, various electrode array configurations tend to exhibit significantly varying detection effects under different survey environments. Hence, to achieve satisfactory detection effects using high-resolution electrical resistivity tomography, it is necessary to explore the strategy for choosing appropriate array configurations targeting different objects in practical work. Given the high applicability of the method, its forward and inversion calculations remain a critical task. Based on the differential equations to be satisfied by the point source potential in a three-dimensional structure, this study derived the variational problem to be satisfied by the 2.5D potential and conducted the unstructured gridding using the Delaunay triangulation algorithm, thus achieving finite-element forward modeling. By combining practical applications, this study designed common geological models and performed forward and inverse calculations using Wenner $\alpha $, Wenner $\beta $, Schlumberger, and dipole-dipole arrays, analyzing their detection effectiveness in different environments. Key findings are as follows: (1) For the detection of isolated anomalous bodies in an unknown area, the Wenner $\beta $ and Schlumberger configurations, determined by considering the accuracy and efficiency, can yield better detection effects. (2) The Schlumberger and dipole-dipole configurations exhibit higher horizontal resolution and can distinguish multiple anomalous bodies nearby. (3) For the detection of low-resistivity fractured zones, the Wenner $\beta $ and dipole-dipole configurations enjoy better performance. (4) For strata with distinct boundaries, the Wenner $\alpha $, Wenner $\beta $, Schlumberger, and dipole-dipole configurations can all yield encouraging detection results. Therefore, for data collection using high-resolution electrical resistivity tomography, it is necessary to choose multiple array configurations and conduct comprehensive comparisons and interpretations of the forward and inverse modeling results.
Keywords
Multi-electrode resistivity method, unstructured grid, finite element method, array configuration, geophysical forward and inversion calculations, resistivity
DOI
10.12363/issn.1001-1986.23.11.0731
Recommended Citation
ZHAO Rongchun, LYU Yuzeng, ZHANG Zhi,
et al.
(2024)
"Exploring the detection performance of different array configurations for Multi-electrode resistivity method tomography using a 2.5D finite element method,"
Coal Geology & Exploration: Vol. 52:
Iss.
4, Article 14.
DOI: 10.12363/issn.1001-1986.23.11.0731
Available at:
https://cge.researchcommons.org/journal/vol52/iss4/14
Reference
[1] 王喜迁,孙明国,张皓,等. 高密度电法在岩溶探测中的应用[J]. 煤田地质与勘探,2011,39(5):72−75
WANG Xiqian,SUN Mingguo,ZHANG Hao,et al. Application of high–density electrical technique in karst detection[J]. Coal Geology & Exploration,2011,39(5):72−75
[2] DINES K A,LYTLE R J. Analysis of electrical conductivity imaging[J]. Geophysics,1981,46(7):1025–1036.
[3] TRIPP A C,HOHMANN G W,SWIFT JR C M. Two–dimensional resistivity inversion[J]. Geophysics,1984,49(10):1708−1717.
[4] 江玉乐,张朝霞,周清强. 高密度电阻率法在覆盖层厚度探测中的应用[J]. 煤田地质与勘探,2007,35(3):69−71
JIANG Yule,ZHANG Zhaoxia,ZHOU Qingqiang. Application of high density resistivity method to overcast thickness exploration[J]. Coal Geology & Exploration,2007,35(3):69−71
[5] 赵讯. 考古和文物保护工作中物探技术的应用分析[J]. 文物鉴定与鉴赏,2020,174(3):164−165
ZHAO Xun. Application analysis of geophysical exploration technology in archaeological and cultural relics protection work[J]. Identification and Appreciation to Cultural Relics,2020,174(3):164−165
[6] 姚纪华,伍佑伦,宋子龙,等. 探地雷达和高密度电法识别大坝塑性混凝土防渗墙渗漏缺陷研究[J]. 工程地球物理学报,2023,20(5):599−604
YAO Jihua,WU Youlun,SONG Zilong,et al. Research on identifying leakage defects of plastic concrete cutoff walls in dams by ground penetrating radar and high density electrical method[J]. Chinese Journal of Engineering Geophysics,2023,20(5):599−604
[7] 杨佳鸣,王晓凡,刘满苍. 基于高密度电法的常用勘探装置野外实测效果分析[J]. 陕西水利,2019(8):119−121
YANG Jiaming,WANG Xiaofan,LIU Mancang. Analysis of actual measurement results of common detection devices based on high density electrical method[J]. Shaanxi Water Resources,2019(8):119−121
[8] 李文忠,孙卫民. 分布式高密度电法装置类型选择及工程勘查应用[J]. 长江科学院院报,2019,36(10):161−164
LI Wenzhong,SUN Weimin. Selection of distributed high–density resistivity devices and application in engineering exploration[J]. Journal of Yangtze River Scientific Research Institute,2019,36(10):161−164
[9] 郭清石. 高密度电法对溶洞勘探的数值模拟研究[D]. 成都:西南交通大学,2013.
GUO Qingshi. The numerical simulation research of high–density electrical method in karst cave exploration[D]. Chengdu:Southwest Jiaotong University,2013.
[10] 孙忠辉. 高密度电法在复杂岩溶区公路勘察中的应用效果研究[D]. 成都:西南交通大学,2014.
SUN Zhonghui. Application effect of high–density electrical prospecting in complex karst area of highway[D]. Chengdu:Southwest Jiaotong University,2014.
[11] 王刚,王启春,郭广礼,等. 高密度电法不同装置在勘察中的对比研究[J]. 煤炭技术,2020,39(5):68−70
WANG Gang,WANG Qichun,GUO Guangli,et al. Comparative study on different devices of high density electric method in exploration[J]. Coal Technology,2020,39(5):68−70
[12] FOX R C,HOHMANN G W,KILLPACK T J,et al. Topographic effects in resistivity and induced–polarization surveys[J]. Geophysics,1980,45(1):75−93.
[13] BEFUS K M. Pyres:A Python wrapper for electrical resistivity modeling with R2[J]. Journal of Geophysics and Engineering,2018,15:338−346.
[14] 欧阳永永,熊章强,张大洲. 基于不同装置的二维高密度电法勘探效果比较与分析[J]. 世界地质,2011,30(3):451−458
OUYANG Yongyong,XIONG Zhangqiang,ZHANG Dazhou. Comparison and analysis of 2D high–density electrical prospecting effect by different devices[J]. Global Geology,2011,30(3):451−458
[15] 王智,方思南,姜匡义,等. 基于非结构化网格的井地电阻率法三维正演模拟及异常特征研究[J]. 地球物理学进展,2022,37(4):1620−1630
WANG Zhi,FANG Sinan,JIANG Kuangyi,et al. Research on 3D hole–to–surface resistivity forward modeling and anomaly based on unstructured meshes[J]. Progress in Geophysics,2022,37(4):1620−1630
[16] 郑冰,李柳德. 高密度电法不同装置的探测效果对比[J]. 工程地球物理学报,2015,12(1):33−39
ZHENG Bing,LI Liude. The exploring effect comparison of different settings in resistivity tomography[J]. Chinese Journal of Engineering Geophysics,2015,12(1):33−39
[17] 吴小平,刘洋,王威. 基于非结构网格的电阻率三维带地形反演[J]. 地球物理学报,2015,58(8):2706−2717
WU Xiaoping,LIU Yang,WANG Wei. 3D resistivity inversion incorporating topography based on unstructured meshes[J]. Chinese Journal of Geophysics,2015,58(8):2706−2717
[18] RUCKER C,GUNTHER T,SPITZER K. Three–dimensional modelling and inversion of dc resistivity data incorporating topography–I. Modelling[J]. Geophysical Journal International,2006,166(2):495−505.
[19] GUNTHER T,RUCKER C,SPITZER K. Three–dimensional modelling and inversion of dc resistivity data incorporating topography–II. Inversion[J]. Geophysical Journal International,2006,166(2):506−517.
[20] 徐世浙. 地球物理中的有限单元法[M]. 北京:科学出版社,1994.
[21] DEY A,MORRISON H F. Resistivity modeling for arbitrarily shaped two–dimensional structures[J]. Geophysical Prospecting,1979,27(1):106−136.
[22] JIN Jianming. The finite element method in electromagnetics (Second Edition)[M]. New York:Wiley–IEEE Press,2002.
[23] ENGWIRDA D. Locally optimal Delaunay–refinement and optimisation–based mesh generation[D]. Sydney:The University of Sydney,2014.
[24] ENGWIRDA D. Unstructured mesh methods for the Navier–Stokes equations[D]. Sydney:The University of Sydney,2005.
[25] PRESS W H,FLANNERY B P,TEUKOL S A,et al. Numerical recipes in pascal:The art of scientific computing[M]. Cambridge:Cambridge University Press,1989.
[26] LABRECQUE D J,MILETTO M,DAILY W,et al. The effects of Occam’s inversion of resistivity tomography data[J]. Geophysics,1996,61(2):538−548.
[27] 程志平. 电法勘探教程[M]. 北京:冶金工业出版社,2007.
Click below to download English version.
Exploring the detection performance of different array configurations for Multi-electrode resistivity method tomography using a 2.5D finite element method.pdf (4721 kB)Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons