Coal Geology & Exploration
Abstract
Shanxi Province boasts abundant bauxite resources occurring in coal measure strata, with the deep bauxite resources in this province subjected to progressive assessment. This study aims to further determine the endowment of aluminum resources within coals in the province and explore efficient exploration methods. To this end, this study investigated the bauxite layers in Upper Carboniferous coal measure strata in the Xiaoyi area, Shanxi Province. It examined 37 samples from three boreholes using methods such as optical microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray fluorescence spectrometry (XRF), and inductively coupled plasma mass spectrometry (ICP-MS). Based on the analysis of the sedimentary environment and metallogenic provenance of the bauxite layers in coal measure strata, this study delved into the occurrence states and enrichment genesis of uranium (U) and thorium (Th) elements in bauxite and explored the correlations of the geochemical characteristics of U and Th with the natural gamma-ray (GR) anomalies. The results show that: (1) The bauxite layers in the Xiaoyi area were formed in a sedimentary environment dominated by marine, alkaline, and slightly oxidizing conditions. Furthermore, oxidizing, slightly oxidizing - slightly reducing, and reducing environments also existed in the sedimentary process, suggesting constantly slight changes in the redox conditions. (2) The bauxite, sharing similar provenance with clay rocks (ores) on its roof, originates primarily from acidic magmatic rocks, while ferruginous rocks on its floor are associated with basalts or calcareous mudstones. (3) The anomalous enrichment of U and Th elements in the bauxite layers is primarily dictated by the parent rock types in the provenance area, as well as the adsorption capacity of bauxite and clay and titanium-bearing minerals. (4) The high GR anomalies of the bauxite are primarily induced by the enriched U and Th elements, with Th elements contributing more significantly than U elements. The results of this study hold practical significance for distinguishing bauxite in coal measure strata from surrounding rocks, determining the bauxite’s horizons, and predicting the thicknesses of ore bodies. The results can also serve as a theoretical guide for the exploration and exploitation of deep bauxite in coal measure strata.
Keywords
Xiaoyi, Shanxi, bauxite, uranium, thorium, enrichment genesis, natural gamma-ray anomaly, coal measure
DOI
10.12363/issn.1001-1986.23.05.0277
Recommended Citation
ZHANG Xiaohui, ZHANG Shangqing, LIU Dongna,
et al.
(2024)
"Uranium and thorium enrichment characteristics of bauxite in coal measure strata and their natural gamma-ray responses,"
Coal Geology & Exploration: Vol. 52:
Iss.
3, Article 8.
DOI: 10.12363/issn.1001-1986.23.05.0277
Available at:
https://cge.researchcommons.org/journal/vol52/iss3/8
Reference
[1] 薛良喜. 鄂尔多斯盆地东北缘本溪组–山西组自然伽马高异常的成因及其地质意义[D]. 徐州:中国矿业大学,2016.
XUE Liangxi. The genesis analysis and geological significance of high natural Gamma anomaly from Benxi to Shanxi Formation,northeastern Ordos Basin[D]. Xuzhou:China University of Mining and Technology,2016.
[2] CUMBERLAND S A,DOUGLAS G,GRICE K,et al. Uranium mobility in organic matter–rich sediments:A review of geological and geochemical processes[J]. Earth–Science Reviews,2016,159:160−185.
[3] WANG Qingfei,LIU Xuefei,YAN Changhai,et al. Mineralogical and geochemical studies of boron–rich bauxite ore deposits in the Songqi region,SW Henan,China[J]. Ore Geology Reviews,2012,48:258−270.
[4] HANILÇI N. Geological and geochemical evolution of the Bolkardaği bauxite deposits,Karaman,Turkey:Transformation from shale to bauxite[J]. Journal of Geochemical Exploration,2013,133:118−137.
[5] GAMALETSOS P,GODELITSAS A,MERTZIMEKIS T J,et al. Thorium partitioning in Greek industrial bauxite investigated by synchrotron radiation and laser–ablation techniques[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2011,269(24):3067−3073.
[6] 黄智龙,金中国,向贤礼,等. 黔北务正道铝土矿成矿理论及预测[M]. 北京:科学出版社,2014.
[7] 龙永珍,池国祥,谷湘平,等. 贵州云峰铝土矿中铀矿物的发现[J]. 矿床地质,2019,38(1):170−180.
LONG Yongzhen,CHI Guoxiang,GU Xiangping,et al. Discovery of uranium minerals in Yunfeng bauxite deposit,Guizhou Province[J]. Mineral Deposits,2019,38(1):170−180.
[8] 湖南湘西李家田铝土矿放射性调查报告[R]. 湖南有色地勘局245队,1960.
[9] 杨中华. 山西省铝(粘)土矿综合开发利用研究[D]. 北京:中国地质大学(北京),2011.
YANG Zhonghua. Study on the comprehensive exploitation and utilization of bauxite (clay) deposits in Shanxi Province,China[D]. Beijing:China University of Geosciences(Beijing),2011.
[10] U. S. Geological Survey. Mineral commodity summaries 2023[R]. American:U. S. Geological Survey,2023.
[11] 高兰,王登红,熊晓云,等. 中国铝矿成矿规律概要[J]. 地质学报,2014,88(12):2284−2295.
GAO Lan,WANG Denghong,XIONG Xiaoyun,et al. Summary on aluminum ore deposits minerogenetic regulation in China[J]. Acta Geologica Sinica,2014,88(12):2284−2295.
[12] 张尚清,张文旭,钟庄华,等. 山西省兴县铝土矿稀土元素地球化学特征及其地质意义[J]. 中国稀土学报,2018,36(3):338−349.
ZHANG Shangqing,ZHANG Wenxu,ZHONG Zhuanghua,et al. REE geochemical characteristics and geological significance of bauxite from Xing County,Shanxi Province[J]. Journal of the Chinese Society of Rare Earths,2018,36(3):338−349.
[13] LIU Xuefei,WANG Qingfei,FENG Yuewen,et al. Genesis of the Guangou karstic bauxite deposit in Western Henan,China[J]. Ore Geology Reviews,2013,55:162−175.
[14] YANG Shujuan,HUANG Yuanxiao,WANG Qingfei,et al. Mineralogical and geochemical features of karst bauxites from Poci (Western Henan,China),implications for parental affinity and bauxitization[J]. Ore Geology Reviews,2019,105:295−309.
[15] LING Kunyue,ZHU Xiaoqing,TANG Haoshu,et al. Importance of hydrogeological conditions during formation of the karstic bauxite deposits,Central Guizhou Province,Southwest China:A case study at Lindai deposit[J]. Ore Geology Reviews,2017,82:198−216.
[16] KALAITZIDIS S,SIAVALAS G,SKARPELIS N,et al. Late Cretaceous coal overlying karstic bauxite deposits in the Parnassus–Ghiona Unit,Central Greece:Coal characteristics and depositional environment[J]. International Journal of Coal Geology,2010,81(4):211−226.
[17] AHMADNEJAD F,ZAMANIAN H,TAGHIPOUR B,et al. Mineralogical and geochemical evolution of the Bidgol bauxite deposit,Zagros Mountain Belt,Iran:Implications for ore genesis,rare earth elements fractionation and parental affinity[J]. Ore Geology Reviews,2017,86:755−783.
[18] ZHANG Shangqing,ZHAO Fenghua,LIU Dongna,et al. Modes of occurrence of critical metal elements (Li,REEs and Other Critical Elements) in low–grade bauxite from Southern Shanxi Province,China[J]. Minerals,2022,12(8):990.
[19] 庹必阳,王建丽,张覃. 稀土元素在铝土矿中的赋存状态及利用现状[J]. 稀土,2007,28(1):117−119.
TUO Biyang,WANG Jianli,ZHANG Qin. Occurrence and utilization of rare earth element in bauxite[J]. Chinese Rare Earths,2007,28(1):117−119.
[20] 王银喜,李惠民,顾连兴,等. 山西铝土矿Rb–Sr同位素定年[J]. 地球学报,2003,24(6):589−592.
WANG Yinxi,LI Huimin,GU Lianxing,et al. Rb–Sr isotope dating of bauxite deposits in Shanxi Province[J]. Acta Geoscientica Sinica,2003,24(6):589−592.
[21] 王庆飞,邓军,刘学飞,等. 铝土矿地质与成因研究进展[J]. 地质与勘探,2012,48(3):430−448.
WANG Qingfei,DENG Jun,LIU Xuefei,et al. Review on research of bauxite geology and genesis in China[J]. Geology and Exploration,2012,48(3):430−448.
[22] ZHANG Shangqing,LIU Xuefei,ZHAO Fenghua,et al. Geological and geochemical characteristics of karst bauxite–bearing sequences in Xiabu area,Central Shanxi Province,North China[J]. Journal of Geochemical Exploration,2021,230:106849.
[23] 刘蕾,刘学飞,马遥,等. 华北石炭纪艾雨头大型喀斯特铝土矿成因机制研究[J]. 岩石学报,2023,39(2):621−637.
LIU Lei,LIU Xuefei,MA Yao,et al. Genetic mechanism of the large Carboniferous Aiyutou karstic bauxite in North China Craton[J]. Acta Petrologica Sinica,2023,39(2):621−637.
[24] 周晓林,代迪,苟熠,等. 煤田测井资料在圈定黔北煤系铀矿靶区中的应用[J]. 煤田地质与勘探,2017,45(6):159−163.
ZHOU Xiaolin,DAI Di,GOU Yi,et al. Application of coalfield logging data in prospecting target area of uranium deposit in coal measures in Northern Guizhou[J]. Coal Geology & Exploration,2017,45(6):159−163.
[25] 谷现平,聂新恕,张树胜. 自然伽马异常在宣东矿区岩煤层对比中的应用[J]. 中国煤炭地质,2010,22(增刊1):94−96.
GU Xianping,NIE Xinshu,ZHANG Shusheng. Application of Gamma–ray anomaly in Xuandong mine area coal and rock correlation[J]. Coal Geology of China,2010,22(Sup.1):94−96.
[26] 陈荣钱. 自然伽玛特殊异常在煤层对比方法中的应用[J]. 能源与环境,2016(3):29−30.
CHEN Rongqian. Application of natural Gamma special anomaly in coal seam correlation method[J]. Energy and Environment,2016(3):29−30.
[27] 刘近帮. 黔西盘县晚二叠世煤系自然伽马高异常层沉积特征及成因[D]. 徐州:中国矿业大学,2019.
LIU Jinbang. Sedimentary characteristics and origin of high natural Gamma abnormal layers of Late Permian coal measures in Panxian area of Western Guizhou Province[D]. Xuzhou:China University of Mining and Technology,2019.
[28] 周贤青,秦勇,陆鹿. 中国煤型铀地质–地球化学研究进展[J]. 煤田地质与勘探,2019,47(4):45−53.
ZHOU Xianqing,QIN Yong,LU Lu. Advances on geological–geochemical research of coal–type uranium in China[J]. Coal Geology & Exploration,2019,47(4):45−53.
[29] 曹庆一,任文颖,梁朝铭,等. 中国煤中有害微量元素含量的空间分布[J]. 煤田地质与勘探,2022,50(5):13−22.
CAO Qingyi,REN Wenying,LIANG Chaoming,et al. Spatial distribution of harmful trace elements in Chinese coals[J]. Coal Geology & Exploration,2022,50(5):13−22.
[30] LI Shuai,ZHANG Rui,FENG Ru,et al. Feasibility of recycling bayer process red mud for the safety backfill mining of layered soft bauxite under coal seams[J]. Minerals,2021,11(7):722.
[31] 李真. 霍西盆地铝(粘)土矿含矿岩系中“三稀”元素含量特征及其成矿机理浅析[J]. 华北自然资源,2019(1):25−28.
LI Zhen. Analysis on the content characteristics and metallogenic mechanism of “three rare” elements in the ore–bearing rock series of aluminum (clay) ore in Huoxi Basin[J]. Huabei Natural Resources,2019(1):25−28.
[32] AL–BASSAM K S. Mineralogy and geochemistry of the Hussainiyat karst bauxites and Zabira stratiform bauxite in Northern Arabian Peninsula[J]. Iraqi Bulletin of Geology and Mining,2005,1(2):15−44.
[33] TAYLOR S R,MCCLENNAN S M. The continental crust:Its composition and evolution[J]. The Journal of Geology,1985,94(4):57−72.
[34] BENNETT W W,CANFIELD D E. Redox–sensitive trace metals as paleoredox proxies:A review and analysis of data from modern sediments[J]. Earth–Science Reviews,2020,204:103175.
[35] ZHANG Xianguo,LIN Chengyan,ZAHID M A,et al. Paleosalinity and water body type of Eocene Pinghu Formation,Xihu Depression,East China Sea Basin[J]. Journal of Petroleum Science and Engineering,2017,158:469−478.
[36] LIANG Chao,JIANG Zaixing,CAO Yingchang,et al. Sedimentary characteristics and paleoenvironment of shale in the Wufeng–Longmaxi Formation,North Guizhou Province,and its shale gas potential[J]. Journal of Earth Science,2017,28(6):1020−1031.
[37] LUKAS T C,LOUGHNAN F C,EADES J L. Origin of bauxite at Eufaula,Alabama,USA[J]. Clay Minerals,1983,18(2):127−138.
[38] 杨季华,罗重光,杜胜江,等. 高黏土含量沉积岩古环境指标适用性讨论[J]. 矿物学报,2020,40(6):723−733.
YANG Jihua,LUO Chongguang,DU Shengjiang,et al. Discussion on the applicability of paleoenvironmental index for sedimentary rocks with high clay content[J]. Acta Mineralogica Sinica,2020,40(6):723−733.
[39] HATCH J R,LEVENTHAL J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone,Wabaunsee County,Kansas,U. S. A.[J]. Chemical Geology,1992,99(1/2/3):65−82.
[40] JONES B,MANNING D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology,1994,111(1/2/3/4):111−129.
[41] MCLENNAN S M. Rare earth elements in sedimentary rocks;influence of provenance and sedimentary processes[J]. Reviews in Mineralogy and Geochemistry,1989,21(1):169−200.
[42] KARADAĞ M M,KÜPELI Ş,ARÝK F,et al. Rare earth element (REE) geochemistry and genetic implications of the Mortaş bauxite deposit (Seydişehir/Konya–Southern Turkey)[J]. Geochemistry,2009,69(2):143−159.
[43] 李普涛,张起钻. 广西靖西县三合铝土矿稀土元素地球化学研究[J]. 矿产与地质,2008,22(6):536−540.
LI Putao,ZHANG Qizuan. Research on geochemistry of REE in the Sanhe bauxite deposit in Jingxi County,Guangxi[J]. Mineral Resources and Geology,2008,22(6):536−540.
[44] 刘海鹏,陈磊,李军旗,等. 河南省新安县石寺−北冶地区铝土矿地球化学特征及成矿物质来源探讨[J]. 地质与勘探,2022,58(2):247−258.
LIU Haipeng,CHEN Lei,LI Junqi,et al. Geochemical characteristics and ore-forming material source of bauxite in the Shisi-Beiye Area of Xin’an County, Henan Province[J]. Geology and Exploration,2022, 58(2):247−258.
[45] MAKSIMOVIC Z,PANTÓ G. Contribution to the geochemistry of the rare earth elements in the karst–bauxite deposits of Yugoslavia and Greece[J]. Geoderma,1991,51(1/2/3/4):93−109.
[46] MONGELLI G. Ce–anomalies in the textural components of Upper Cretaceous karst bauxites from the Apulian carbonate platform (Southern Italy)[J]. Chemical Geology,1997,140(1-2):69−79.
[47] MAMELI P,MONGELLI G,OGGIANO G,et al. Geological,geochemical and mineralogical features of some bauxite deposits from Nurra (Western Sardinia,Italy):Insights on conditions of formation and parental affinity[J]. International Journal of Earth Sciences,2007,96(5):887−902.
[48] MONGELLI G,BONI M,BUCCIONE R,et al. Geochemistry of the Apulian karst bauxites (Southern Italy):Chemical fractionation and parental affinities[J]. Ore Geology Reviews,2014,63:9−21.
[49] KRAEMER D,TEPE N,POURRET O,et al. Negative cerium anomalies in manganese (hydr)oxide precipitates due to cerium oxidation in the presence of dissolved siderophores[J]. Geochimica et Cosmochimica Acta,2017,196:197−208.
[50] ELDERFIELD H,GREAVES M J. The rare earth elements in seawater[J]. Nature,1982,296(5854):214−219.
[51] 任明达,王乃梁. 现代沉积环境概论[M]. 北京:科学出版社,1981.
[52] HASKIN L A,HASKIN M A,FREY F A,et al. Relative and absolute terrestrial abundances of the rare earths[M]. New York:Pergamon Press,1968.
[53] YANG Tianyang,SHEN Yulin,QIN Yong,et al. Distribution of radioactive elements (Th,U) and formation mechanism of the bottom of the Lopingian (Late Permian) coal–bearing series in Western Guizhou,SW China[J]. Journal of Petroleum Science and Engineering,2021,205:108779.
[54] 王银川,李昭坤,翟自峰,等. 山西本溪组铝土矿成矿条件及成矿规律探讨[J]. 西北地质,2011,44(4):82−88.
WANG Yinchuan,LI Zhaokun,ZHAI Zifeng,et al. Benxi Formation bauxite mineralization condition and rule in Shanxi Province[J]. Northwestern Geology,2011,44(4):82−88.
[55] MONGELLI G. REE and other trace elements in a granitic weathering profile from “Serre”,Southern Italy[J]. Chemical Geology,1993,103(1/2/3/4):17−25.
[56] BHATIA M R,CROOK K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology,1986,92(2):181−193.
[57] 梁绍暹. 阿刀亥矿区CP2煤段粘土岩夹矸研究[J]. 煤田地质与勘探,1997,25(1):20−24.
LIANG Shaoxian. Study on tonsteins of coal member CP2 in Ardaohe Coal District[J]. Coal Geology & Exploration,1997,25(1):20−24.
[58] LIU Jian,ZHAO Yue,LIU Ankun,et al. Origin of Late Palaeozoic bauxites in the North China Craton:Constraints from zircon U–Pb geochronology and in situ Hf isotopes[J]. Journal of the Geological Society,2014,171(5):695−707.
[59] WANG Qingfei,DENG Jun,LIU Xuefei,et al. Provenance of Late Carboniferous bauxite deposits in the North China Craton:New constraints on marginal arc construction and accretion processes[J]. Gondwana Research,2016,38:86−98.
[60] YU Wenchao,ALGEO T J,YAN Jiaxin,et al. Climatic and hydrologic controls on upper Paleozoic bauxite deposits in South China[J]. Earth–Science Reviews,2019,189:159−176.
[61] SCHMITZ M D,PFEFFERKORN H W,SHEN Shuzhong,et al. A volcanic tuff near the Carboniferous–Permian boundary,Taiyuan Formation,North China:Radioisotopic dating and global correlation[J]. Review of Palaeobotany and Palynology,2021,294:104244.
[62] HAWKESWORTH C,CAWOOD P,KEMP T,et al. A matter of preservation[J]. Science,2009,323(5910):49−50.
[63] CAI Shuhui,WANG Qingfei,LIU Xuefei,et al. Petrography and detrital zircon study of Late Carboniferous sequences in the Southwestern North China Craton:Implications for the regional tectonic evolution and bauxite genesis[J]. Journal of Asian Earth Sciences,2015,98:421−435.
[64] NASDALA L,HANCHAR J M,RHEDE D,et al. Retention of uranium in complexly altered zircon:An example from Bancroft,Ontario[J]. Chemical Geology,2010,269(3/4):290−300.
[65] 陈继亮. 用测井资料解释铝土矿中氧化铝含量初探[J]. 中国煤田地质,1994,6(2):88−90.
CHEN Jiliang. Preliminary study on interpretation of alumina content in bauxite by logging data[J]. Coal Geology of China,1994,6(2):88−90.
[66] 涂颖,蒋孝君,任志勇,等. 鄂尔多斯盆地苏台庙地区砂岩地球化学环境和常量元素特征及对铀成矿的指示意义[J]. 地质与勘探,2022,58(1):61−73.
TU Ying,JIANG Xiaojun,REN Zhiyong,et al. Geochemical environment and major elements characteristics of sandstones in the Sutaimiao Area,Ordos Basin and their implications for uranium mineralization[J]. Geology and Exploration,2022,58(1):61−73.
[67] GOLUBEV V N,TARASOV N N,CHERNYSHEV I V,et al. Post–ore processes of uranium migration in the sandstone–hosted type deposits:234U/238U,238U/235U and U–Pb Systematics of Ores of the Namaru Deposit,Vitim District,Northern Transbaikalia[J]. Geology of Ore Deposits,2021,63(4):287−299.
[68] ZHONG Fujun,YAN Jie,WANG Kaixing,et al. Mineralogy and geochemistry of pitchblende in the Changjiang U ore field,Guangdong Province,South China:Implications for its mineralization[J]. Geochemical Journal,2022,56(3):74−95.
[69] LONG Yongzhen,CHI Guoxiang,LIU Jianping,et al. Uranium enrichment in a paleo–karstic bauxite deposit,Yunfeng,SW China:Mineralogy,geochemistry,transport–deposition mechanisms and significance for uranium exploration[J]. Journal of Geochemical Exploration,2018,190:424−435.
[70] 王文峰,王文龙,刘双双,等. 煤中铀的赋存分布及其在利用过程中的迁移特征[J]. 煤田地质与勘探,2021,49(1):65−80.
WANG Wenfeng,WANG Wenlong,LIU Shuangshuang,et al. Distribution and occurrence of uranium in coal and its migration behavior during the coal utilization[J]. Coal Geology & Exploration,2021,49(1):65−80.
[71] HOU Baohong,KEELING J,LI Ziying. Paleovalley–related uranium deposits in Australia and China:A review of geological and exploration models and methods[J]. Ore Geology Reviews,2017,88:201−234.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons