•  
  •  
 

Coal Geology & Exploration

Abstract

The void structure evolution of broken coals in a caving zone directly affects the gas seepage characteristics of the zone, further influencing the gas migration and enrichment patterns in abandoned coal mine goaves. With the second generation of compaction-seepage-CT scanning experimental system for broken coals independently designed and developed, this study performed 162 sets of permeability experiments on broken anthracite samples with five particle size ranges under varying gas pressures, axial stresses, and void fractions. Key findings are as follows: (1) When gas migrated in broken anthracite, its pressure and flow rate kept dynamically changing until the adsorption equilibrium was reached. (2) Under a low Reynolds number, a quasi-starting pressure gradient was required for gas flow in broken anthracite. This gradient ranged between 158.89 and 1408.64 Pa/m, increasing with an increase in axial pressure and a decrease in void fraction. (3) The broken anthracite exhibited permeability ranging from 10−12 to 10−10 m2, increasing logarithmically and exponentially with increasing gas pressure and void fraction, respectively. (4) A larger particle size corresponded to larger initial voids in broken anthracite samples within the same loading space, more conducive to gas flow. Therefore, under the same void fraction, the permeability of broken anthracite increases with particle size. (5) The average changing amplitude of the permeability of particles with varying sizes all decreased with a decrease in the void fraction. For particles with a larger size, the changing amplitude decreased more significantly under the same decrease in the void fraction. To achieve the surface extraction of coalbed methane (CBM) from an abandoned coal mine goaf, ground drilling should be preferably arranged in a U-shaped high-permeability CBM-rich zone composed of broken coals in a caving zone and circular overlying zones at the longwall panel in the vertical direction.

Keywords

gas extraction, abandoned coal mine goaf, broken anthracite, gas pressure, void fraction, particle size, permeability

DOI

10.12363/issn.1001-1986.23.10.0708

Reference

[1] 浦海. 保水采煤的隔水关键层模型及力学分析[M]. 徐州:中国矿业大学出版社,2014.

[2] 方智龙,冯国瑞,李振,等. 承压破碎煤体空隙结构演化及渗流特征[J]. 矿业研究与开发,2023,43(1):115−119.

FANG Zhilong,FENG Guorui,LI Zhen,et al. Evolution of void structure and seepage characteristics of crushed coal under pressure[J]. Mining Research and Development,2023,43(1):115−119.

[3] LI Zhen,YANG Peng,YANG Xiaojun,et al. Experimental study on nonuniform compaction and re–crushing behavior for crushed coal gangue under axial loading[J]. IEEE Sensors Journal,2022,22(21):20546−20554.

[4] FENG Guorui,FANG Zhilong,LI Zhen. Effect of particle size on re–crushing characteristics of crushed coal during axial loading[J]. Powder Technology,2022,407:117675.

[5] 马丹,段宏宇,张吉雄,等. 断层破碎带岩体突水灾害的蠕变–冲蚀耦合力学特性试验研究[J]. 岩石力学与工程学报,2021,40(9):1751−1763.

MA Dan,DUAN Hongyu,ZHANG Jixiong,et al. Experimental investigation of creep–erosion coupling mechanical properties of water inrush hazards in fault fracture rock masses[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(9):1751−1763.

[6] 雷杨. 煤与瓦斯突出的次声响应特征与级联破裂发展机制研究[D]. 徐州:中国矿业大学,2023.

LEI Yang. Study on infrasound response characteristics and cascade rupture mechanism of coal and gas outburst[D]. Xuzhou:China University of Mining and Technology,2023.

[7] KOGURE K. Experimental study on permeability of crushed rock[J]. Memoirs of the Defense Academy,1976,16(4):149−154.

[8] KUMAR G N P,VENKATARAMAN P. Non–Darcy converging flow through coarse granular media[J]. Journal of the Institution of Engineers (India):Civil Engineering Division,1995,76:6−11.

[9] LEGRAND J. Revisited analysis of pressure drop in flow through crushed rocks[J]. Journal of Hydraulic Engineering,2002,128(11):1027−1031.

[10] 黄先伍,唐平,缪协兴,等. 破碎砂岩渗透特性与孔隙率关系的试验研究[J]. 岩土力学,2005,26(9):1385−1388.

HUANG Xianwu,TANG Ping,MIAO Xiexing,et al. Testing study on seepage properties of broken sandstone[J]. Rock and Soil Mechanics,2005,26(9):1385−1388.

[11] 马占国,缪协兴,陈占清,等. 破碎煤体渗透特性的试验研究[J]. 岩土力学,2009,30(4):985−988.

MA Zhanguo,MIAO Xiexing,CHEN Zhanqing,et al. Experimental study of permeability of broken coal[J]. Rock and Soil Mechanics,2009,30(4):985−988.

[12] MIAO Xiexing,LI Shuncai,CHEN Zhanqing,et al. Experimental study of seepage properties of broken sandstone under different porosities[J]. Transport in Porous Media,2011,86(3):805−814.

[13] KONG Hailing,CHEN Zhanqing,WANG Luzhen,et al. Experimental study on permeability of crushed gangues during compaction[J]. International Journal of Mineral Processing,2013,124:95−101.

[14] 王路珍,陈占清,孔海陵,等. 渗透压力和初始孔隙度对破碎泥岩变质量渗流影响的试验研究[J]. 采矿与安全工程学报,2014,31(3):462−468.

WANG Luzhen,CHEN Zhanqing,KONG Hailing,et al. An experimental study of the influence of seepage pressure and initial porosity on variable mass seepage for broken mudstone[J]. Journal of Mining & Safety Engineering,2014,31(3):462−468.

[15] 张天军,任金虎,陈占清,等. 混合破碎岩样渗透特性试验研究[J]. 湖南科技大学学报 (自然科学版),2014,29(3):1−5.

ZHANG Tianjun,REN Jinhu,CHEN Zhanqing,et al. Experimental study on the permeability characteristics of mixed broken rock sample[J]. Journal of Hunan University of Science & Technology (Natural Science Edition),2014,29(3):1−5.

[16] 张天军,陈佳伟,武振虎,等. 2种典型嵌挤骨架配比下混合煤样的渗透特性[J]. 西安科技大学学报,2019,39(3):388−394.

ZHANG Tianjun,CHEN Jiawei,WU Zhenhu,et al. Permeability of mixed coal samples with two typical intercalated skeleton ratios[J]. Journal of Xi’an University of Science and Technology,2019,39(3):388−394.

[17] 马丹,白海波,陈占清,等. 侧限压缩下破碎矸石混合粒径非Darcy流渗透特性[J]. 采矿与安全工程学报,2016,33(4):747−753.

MA Dan,BAI Haibo,CHEN Zhanqing,et al. Non–Darcy seepage properties of mixture particles of crushed gangue under confined compression[J]. Journal of Mining & Safety Engineering,2016,33(4):747−753.

[18] 张培森,孙亚楠,颜伟,等. 饱和破碎砂岩承压变形及渗流特性试验研究[J]. 采矿与安全工程学报,2019,36(5):1016−1024.

ZHANG Peisen,SUN Yanan,YAN Wei,et al. Experimental study on pressure deformation and seepage characteristics of saturated crushed rock[J]. Journal of Mining and Safety Engineering,2019,36(5):1016−1024.

[19] 郁邦永,潘书才,魏建军,等. 承压饱和破碎岩石颗粒破碎及渗透率演化特征研究[J]. 采矿与安全工程学报,2020,37(3):632−638.

YU Bangyong,PAN Shucai,WEI Jianjun,et al. Particle crushing and permeability evolution of saturated broken rock under compaction[J]. Journal of Mining & Safety Engineering,2020,37(3):632−638.

[20] 李顺才,陈占清,缪协兴,等. 破碎岩体中气体渗流的非线性动力学研究[J]. 岩石力学与工程学报,2007,26(7):1372−1380.

LI Shuncai,CHEN Zhanqing,MIAO Xiexing,et al. Nonlinear dynamic study on gas flow in broken rock mass[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(7):1372−1380.

[21] 李顺才,陈占清,缪协兴. 破碎岩体渗流的试验及理论研究综述[J]. 山东科技大学学报(自然科学版),2008,27(3):37−43.

LI Shuncai,CHEN Zhanqing,MIAO Xiexing. Summarization on the experimental and theoretical researches of the vadose in broken lithosome[J]. Journal of Shandong University of Science and Technology (Natural Science),2008,27(3):37−43.

[22] CHU Tingxiang,YU Minggao,JIANG Deyi. Experimental investigation on the permeability evolution of compacted broken coal[J]. Transport in Porous Media,2017,116(2):847−868.

[23] 褚廷湘,姜德义,余明高. 承压颗粒煤逐级加载下渗透特性实验研究[J]. 中国矿业大学学报,2017,46(5):1058−1065.

CHU Tingxiang,JIANG Deyi,YU Minggao. Experimental study of the seepage properties of the compacted particle coal under gradual loading[J]. Journal of China University of Mining and Technology,2017,46(5):1058−1065.

[24] ZHANG Cun,ZHANG Lei. Permeability characteristics of broken coal and rock under cyclic loading and unloading[J]. Natural Resources Research,2019,28(3):1055−1069.

[25] LI Bo,ZOU Quanle,LIANG Yunpei. Experimental research into the evolution of permeability in a broken coal mass under cyclic loading and unloading conditions[J]. Applied Sciences,2019,9(4):762.

[26] LI Zhen,FENG Guorui,JIANG Haina,et al. The correlation between crushed coal porosity and permeability under various methane pressure gradients:A case study using Jincheng anthracite[J]. Greenhouse Gases:Science and Technology,2018,8(3):493−509.

[27] 李振. 老空区破碎煤岩体变形与渗流特性研究及在煤层气抽采中的应用[D]. 太原:太原理工大学,2018.

LI Zhen. Research on the deformation and seepage characteristics of crushed coal and rock and its application in abandoned coal mine gob methane extraction[D]. Taiyuan:Taiyuan University of Technology,2018.

[28] YANG Xiaojun,LI Zhen,WANG Hongwei,et al. Experimental study on compaction deformation and gas permeability properties for crushed limestone[J]. ACS Omega,2023. DOI:10. 1021/acsomega. 3c08132.

[29] FENG Guorui,ZHANG Yidie,LI Zhen,et al. Quantitative analysis of layered re–crushing of crushed coal particles during compression based on CT scanning[J]. Powder Technology,2023,426:118638.

[30] LI Zhen,YANG Xiaojun,YANG Peng,et al. Layered re–breaking behavior of gangue backfilling materials and inspirations for protecting mined ecological environments[J]. Construction and Building Materials,2023,368:130477.

[31] CHAO Jiangkun,YU Minggao,CHU Tingxiang,et al. Evolution of broken coal permeability under the condition of stress,temperature,moisture content,and pore pressure[J]. Rock Mechanics and Rock Engineering,2019,52(8):2803−2814.

[32] LIU Wei,WU Deyao,XU Hao,et al. A permeability evolution model of coal particle from the perspective of adsorption deformation[J]. Energy Science & Engineering,2021,9(4):577−587.

[33] PANG Mingkun,ZHANG Tianjun,JI Xiang,et al. Measurement of the coefficient of seepage characteristics in pore–crushed coal bodies around gas extraction boreholes[J]. Energy,2022,254:124276.

[34] PANG Mingkun,ZHANG Tianjun,LI Yang,et al. Experimental investigation of water–gas mixed seepage parameters characteristics in broken coal medium[J]. Energy Reports,2022,8:281−289.

[35] 孟召平,李国富,田永东,等. 晋城矿区废弃矿井采空区煤层气地面抽采研究进展[J]. 煤炭科学技术,2022,50(1):204−211.

MENG Zhaoping,LI Guofu,TIAN Yongdong,et al. Research progress on surface drainage of coalbed methane in abandoned mine gobs of Jincheng Mining Area[J]. Coal Science and Technology,2022,50(1):204−211.

[36] 袁亮. 我国煤炭资源高效回收及节能战略研究[M]. 北京:科学出版社,2017.

[37] FENG Guorui,HU Shengyong,LI Zhen,et al. Distribution of methane enrichment zone in abandoned coal mine and methane drainage by surface vertical boreholes:A case study from China[J]. Journal of Natural Gas Science and Engineering,2016,34:767−778.

[38] 高强. 冲击作用下硬煤耗能与破裂特征试验研究[D]. 淮南:安徽理工大学,2020.

GAO Qiang. Experimental study on energy consumption and fracture characteristics of hard coal under impact[D]. Huainan:Anhui University of Science and Technology,2020.

[39] 王磊,张帅,刘怀谦,等. 冲击荷载下含瓦斯煤能量耗散及损伤破坏规律[J]. 岩土力学,2023,44(7):1901−1915.

WANG Lei,ZHANG Shuai,LIU Huaiqian,et al. Research on energy dissipation and damage failure law of gas–bearing coal under impact loading[J]. Rock and Soil Mechanics,2023,44(7):1901−1915.

[40] 刘建军,刘先贵,胡雅衽. 低渗透岩石非线性渗流规律研究[J]. 岩石力学与工程学报,2003,22(4):556−561.

LIU Jianjun,LIU Xiangui,HU Yaren. Study on nonlinear seepage of rock of low permeability[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(4):556−561.

[41] KLINKENBERG L J. The permeability of porous media to liquids and gases:Drilling and Production Practice[C]. American Petroleum Institute,1941.

[42] 陈代询,王章瑞. 致密介质中低速渗流气体的非达西现象[J]. 重庆大学学报(自然科学版),2000,23(增刊1):25−27.

CHEN Daixun,WANG Zhangrui. Non–Darcy phenomena of gas flow at low velocity in tight porous media[J]. Journal of Chongqing University (Natural Science Edition),2000,23(Sup.1):25−27.

[43] 李元生,李相方,藤赛男,等. 考虑变启动压降和高速非达西渗流的产能计算新方法[J]. 石油钻探技术,2012,40(2):70−75.

LI Yuansheng,LI Xiangfang,TENG Sainan,et al. New productivity calculation method considering no constant starting pressure drop and high velocity Non–Darcy flow[J]. Petroleum Drilling Techniques,2012,40(2):70−75.

[44] 熊伟,雷群,刘先贵,等. 低渗透油藏拟启动压力梯度[J]. 石油勘探与开发,2009,36(2):232−236.

XIONG Wei,LEI Qun,LIU Xiangui,et al. Pseudo threshold pressure gradient to flow for low permeability reservoirs[J]. Petroleum Exploration and Development,2009,36(2):232−236.

[45] 缪协兴,刘卫群,陈占清. 采动岩体渗流理论[M]. 北京:科学出版社,2004.

[46] HELLER R,VERMYLEN J,ZOBACK M. Experimental investigation of matrix permeability of gas shales[J]. AAPG Bulletin,2014,98(5):975−995.

[47] LI Jing,XIE Yetong,LIU Huimin,et al. Combining macro and micro experiments to reveal the real–time evolution of permeability of shale[J]. Energy,2023,262(Part B):125509.

[48] LIU Jishan,WANG Jianguo,CHEN Zhongwei,et al. Impact of transition from local swelling to macro swelling on the evolution of coal permeability[J]. International Journal of Coal Geology,2011,88(1):31−40.

[49] PAN Zhejun,CONNELL L D,CAMILLERI M. Laboratory characterization of coal reservoir permeability for primary and enhanced coalbed methane recovery[J]. International Journal of Coal Geology,2010,82(3/4):252−261.

[50] ZANG Jie,WANG Kai,ZHAO Yixin. Evaluation of gas sorption–induced internal swelling in coal[J]. Fuel,2015,143:165−172.

[51] ZHANG Cun,REN Zhaopeng,HAO Dingyi,et al. Numerical simulation of particle size influence on the breakage mechanism of broken coal[J]. Arabian Journal for Science and Engineering,2020,45(11):9171−9185.

[52] 李波. 煤层群多重保护开采煤岩体应力渗流特征及关键层的影响研究[D]. 重庆:重庆大学,2019.

LI Bo. Study on the characteristics of stress seepage of coal–rock mass and the influence of key strata under coal seam group mining with multiple protective layers[D]. Chongqing:Chongqing University,2019.

[53] 张磊,田苗苗,卢硕,等. 不同含水率煤体液氮致裂渗透率变化规律及应力敏感性分析[J]. 岩土力学,2022,43(增刊1):107−116.

ZHANG Lei,TIAN Miaomiao,LU Shuo,et al. Analysis of permeability variation and stress sensitivity of liquid nitrogen fracturing coal with different water contents[J]. Rock and Soil Mechanics,2022,43(Sup.1):107−116.

[54] 钱鸣高,许家林. 覆岩采动裂隙分布的“O”形圈特征研究[J]. 煤炭学报,1998,23(5):466−469.

QIAN Minggao,XU Jialin. Study on the“O–shape”circle distribution characteristics of mining–induced fractures in the overlaying strata[J]. Journal of China Coal Society,1998,23(5):466−469.

[55] 袁亮. 我国煤矿安全发展战略研究[J]. 中国煤炭,2021,47(6):1−6.

YUAN Liang. Study on the development strategy of coal mine safety in China[J]. China Coal,2021,47(6):1−6.

[56] 李树刚,赵鹏翔,严敏,等. 采动裂隙椭抛带中卸压瓦斯储运规律及高效精准抽采技术研究[R]. 西安:西安科技大学,2015.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.