•  
  •  
 

Coal Geology & Exploration

Abstract

Influence by the acquisition environments and instrument performance, missing signals and destructed channels are inevitable in measured ground-penetrating radar (GPR) profiles. They can cause event discontinuity of reflected and diffracted waves generated by targets, severely impairing the accuracy and resolution of subsequent processing and imaging. Hence, by combining the projection onto convex sets (POCS) algorithm extensively used in image processing with the curvelet transform exhibiting high sparsity, this study proposed a high-accuracy reconstruction method for missing GPR signals based on curvelet-domain POCS. Building on the compressive sensing theory, the objective function for missing signal reconstruction based on discrete curvelet transform was established, and the time-domain iterative equation for reconstructing missing GPR signals was derived in detail using POCS. The curvelet transform coefficients were updated using linear and exponential iterative threshold models for high-accuracy reconstruction of missing signals in the time domain. The reconstruction accuracy of missing GPR signals was quantitatively evaluated using mean absolute errors (MAEs), signal-to-noise ratios (SNRs), and peak SNRs (PSNRs). The reconstruction experiments of simulated and measured GPR signals show that POCS can effectively reconstruct the missing signals in GPR profiles. Contrasting with the POCS of the linear threshold model, the POCS of the exponential threshold model yielded higher reconstruction accuracy. In the exponential threshold model, compared to frequency-domain POCS, curvelet-domain POCS exhibited smaller reconstruction errors and weaker longitudinal artifact energy during the reconstruction of continuous multi-channel missing signals in GPR profiles, and higher applicability to the reconstruction of missing signals in complex structural models. In contrast to the frequency-domain POCS of both linear and exponential threshold models and the curvelet-domain POCS of the linear threshold model, the curvelet-domain POCS reconstruction method of the exponential threshold model manifested higher reconstruction accuracy, average absolute errors reduced by 45%‒99%, and SNRs and PSNRs enhanced by 1‒20 dB, providing high-quality GPR signals for subsequent processing and interpretation.

Keywords

ground-penetrating radar (GPR), compressive sensing, projection onto convex sets (POCS), curvelet transform, signal reconstruction

DOI

10.12363/issn.1001-1986.23.09.0550

Reference

[1] 戴前伟,宁晓斌,张彬. 基于共中心点道集约束的探地雷达波阻抗反演[J]. 煤田地质与勘探,2020,48(3):211−218.

DAI Qianwei,NING Xiaobin,ZHANG Bin. Common midpoint gather constraint–based impedance inversion of ground penetrating radar[J]. Coal Geology & Exploration,2020,48(3):211−218.

[2] 刘澜波,钱荣毅. 探地雷达:浅表地球物理科学技术中的重要工具[J]. 地球物理学报,2015,58(8):2606−2617.

LIU Lanbo,QIAN Rongyi. Ground Penetrating Radar:A critical tool in near–surface geophysics[J]. Chinese Journal of Geophysics,2015,58(8):2606−2617.

[3] 胡磊磊,陈康,黄德军,等. 基于探地雷达的路基地下异常体全波形反演[J]. 煤田地质与勘探,2022,50(11):195−202.

HU Leilei,CHEN Kang,HUANG Dejun,et al. Subgrade subsurface anomalous body full–waveform inversion based on ground–penetrating radar[J]. Coal Geology & Exploration,2022,50(11):195−202.

[4] 葛双成,邵长云. 岩溶勘察中的探地雷达技术及应用[J]. 地球物理学进展,2005,20(2):476−481.

GE Shuangcheng,SHAO Changyun. Technique and application of GPR in karst prospecting[J]. Progress in Geophysics,2005,20(2):476−481.

[5] XU Xingxin,WU Jin,SHEN Jinyin,et al. Case study:Application of GPR to detection of hidden dangers to underwater hydraulic structures[J]. Journal of Hydraulic Engineering,2006,132(1):12−20.

[6] 郭士礼,段建先,张建锋,等. 探地雷达在城市道路塌陷隐患探测中的应用[J]. 地球物理学进展,2019,34(4):1609−1613.

GUO Shili,DUAN Jianxian,ZHANG Jianfeng,et al. Application of GPR in urban road hidden diseases detection[J]. Progress in Geophysics,2019,34(4):1609−1613.

[7] TSOGTBAATAR A,KAWAI T,SATO M. Ground penetrating radar for soil–water measurement in a semi–arid climate in the Orkhon River Basin,central Mongolia[J]. Exploration Geophysics,2022,53(2):229−236.

[8] RUCKA M,WOJTCZAK E,ZIELINSKA M. Interpolation methods in GPR tomographic imaging of linear and volume anomalies for cultural heritage diagnostics[J]. Measurement,2020,154:107494.

[9] 唐刚,杨慧珠. 基于泊松碟采样的地震数据压缩重建[J]. 地球物理学报,2010,53(9):2181−2188.

TANG Gang,YANG Huizhu. Seismic data compression and reconstruction based on Poisson Disk sampling[J]. Chinese Journal of Geophysics,2010,53(9):2181−2188.

[10] CANDES E J,ROMBERG J,TAO T. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory,2006,52(2):489−509.

[11] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory,2006,52(4):1289−1306.

[12] CANDES E J,WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine,2008,25(2):21−30.

[13] 石光明,刘丹华,高大化,等. 压缩感知理论及其研究进展[J]. 电子学报,2009,37(5):1070−1081.

SHI Guangming,LIU Danhua,GAO Dahua,et al. Advances in theory and application of compressed sensing[J]. Acta Electronica Sinica,2009,37(5):1070−1081.

[14] 焦李成,杨淑媛,刘芳,等. 压缩感知回顾与展望[J]. 电子学报,2011,39(7):1651−1662.

JIAO Licheng,YANG Shuyuan,LIU Fang,et al. Development and prospect of compressive sensing[J]. Acta Electronica Sinica,2011,39(7):1651−1662.

[15] 邵文泽,韦志辉. 压缩感知基本理论:回顾与展望[J]. 中国图象图形学报,2012,17(1):1−12.

SHAO Wenze,WEI Zhihui. Advances and perspectives on compressed sensing theory[J]. Journal of Image and Graphics,2012,17(1):1−12.

[16] 杨连刚,李凌云,杨玉梅,等. 一种基于压缩感知的随机噪声压制方法[J]. 煤田地质与勘探,2019,47(4):165−171.

YANG Liangang,LI Lingyun,YANG Yumei,et al. A method of random noise suppression based on compressed sensing[J]. Coal Geology & Exploration,2019,47(4):165−171.

[17] 孙苗苗,李振春,李志娜,等. 基于压缩感知的加权MCA地震数据重构方法[J]. 地球物理学报,2019,62(3):1007−1021.

SUN Miaomiao,LI Zhenchun,LI Zhina,et al. Reconstruction of seismic data with weighted MCA based on compressed sensing[J]. Chinese Journal of Geophysics,2019,62(3):1007−1021.

[18] LIU Bin,SACCHI M D. Minimum weighted norm interpolation of seismic records[J]. Geophysics,2004,69(6):1560−1568.

[19] XU Sheng,ZHANG Yu,PHAM D,et al. Antileakage Fourier transform for seismic data regularization[J]. Geophysics,2005,70(4):V87−V95.

[20] ZHANG Hua,CHEN Xiaohong,WU Xinmin. Seismic data reconstruction based on CS and Fourier theory[J]. Applied Geophysics,2013,10(2):170−180.

[21] 刘保童. 一种基于傅里叶变换的去假频内插方法及应用[J]. 煤田地质与勘探,2009,37(2):63−67.

LIU Baotong. Dealiasing interpolation based on Fourier transform and its application[J]. Coal Geology & Exploration,2009,37(2):63−67.

[22] WANG Yanfei,CAO Jingjie,YANG Changchun. Recovery of seismic wavefields based on compressive sensing by an l1–norm constrained trust region method and the piecewise random subsampling[J]. Geophysical Journal International,2011,187:199−213.

[23] 郭念民,李海山,冯雪梅,等. 非抽样离散小波变换叠前地震数据重建方法[J]. 石油地球物理勘探,2014,49(3):508−516.

GUO Nianmin,LI Haishan,FENG Xuemei,et al. Pre–stack seismic data reconstruction based on the undecimated wavelet transform[J]. Oil Geophysical Prospecting,2014,49(3):508−516.

[24] 潘龙,毛海波,蒋立,等. 基于特征波形态成分分析的VSP资料套管耦合噪声压制方法[J]. 煤田地质与勘探,2023,51(7):184−190.

PAN Long,MAO Haibo,JIANG Li,et al. A method for suppressing casing coupling noise in VSP data based on morphological component analysis of characteristic waves[J]. Coal Geology & Exploration,2023,51(7):184−190.

[25] 王本锋,陈小宏,李景叶,等. POCS联合改进的Jitter采样理论曲波域地震数据重建[J]. 石油地球物理勘探,2015,50(1):20−28.

WANG Benfeng,CHEN Xiaohong,LI Jingye,et al. Seismic data reconstruction based on POCS and improved Jittered sampling in the curvelet domain[J]. Oil Geophysical Prospecting,2015,50(1):20−28.

[26] 刘仕友,张明林,宋维琪. 基于曲波稀疏变换的拉伸校正方法[J]. 物探与化探,2022,46(1):114−122.

LIU Shiyou,ZHANG Minglin,SONG Weiqi. Stretch correction method based on curvelet sparse transform[J]. Geophysical and Geochemical Exploration,2022,46(1):114−122.

[27] 张良,韩立国,刘争光,等. 基于压缩感知和Contourlet变换的地震数据重建方法[J]. 石油物探,2017,56(6):804−811.

ZHANG Liang,HAN Liguo,LIU Zhengguang,et al. Seismic data reconstruction based on compressed sensing and Contourlet transform[J]. Geophysical Prospecting for Petroleum,2017,56(6):804−811.

[28] 王常波. 基于Shearlet稀疏变换基的压缩感知重建技术[J]. 地球物理学进展,2018,33(6):2441−2449.

WANG Changbo. Compressed sensing seismic data reconstruction with Shearlet transformation[J]. Progress in Geophysics,2018,33(6):2441−2449.

[29] 张岩,任伟建,唐国维. 基于曲波变换的地震数据压缩感知重构算法[J]. 吉林大学学报(信息科学版),2015,33(5):570−577.

ZHANG Yan,REN Weijian,TANG Guowei. Algorithm of compressed sensing reconstruction of seismic data based on curvelet transform[J]. Journal of Jilin University (Information Science Edition),2015,33(5):570−577.

[30] 张帅,杨润海,张演,等. 一种基于曲波域的压缩感知降噪方法及其在水库气枪信号中的应用[J]. 地震研究,2022,45(3):441−451.

ZHANG Shuai,YANG Runhai,ZHANG Yan,et al. Application of a compressive sensing denoising method based on curve wave domain to airgun signals in reservoirs[J]. Journal of Seismological Research,2022,45(3):441−451.

[31] BREGMAN L M. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming[J]. USSR Computational Mathematics and Mathematical Physics,1967,7(3):200−217.

[32] 刘洋,张鹏,刘财,等. 地震数据Bregman整形迭代插值方法[J]. 地球物理学报,2018,61(4):1400−1412.

LIU Yang,ZHANG Peng,LIU Cai,et al. Seismic data interpolation based on Bregman shaping iteration[J]. Chinese Journal of Geophysics,2018,61(4):1400−1412.

[33] 张华,陈小宏. 基于jitter采样和曲波变换的三维地震数据重建[J]. 地球物理学报,2013,56(5):1637−1649.

ZHANG Hua,CHEN Xiaohong. Seismic data reconstruction based on jittered sampling and curvelet transform[J]. Chinese Journal of Geophysics,2013,56(5):1637−1649.

[34] YOULA D C,WEBB H. Image restoration by the method of convex projections:Part 1–theory[J]. IEEE Transactions on Medical Imaging,1982,1(2):81−94.

[35] 苏秉华,金伟其,牛丽红,等. 超分辨率图像复原及其进展[J]. 光学技术,2001,27(1):6−9.

SU Binghua,JIN Weiqi,NIU Lihong,et al. Super–resolution image restoration and progress[J]. Optical Technique,2001,27(1):6−9.

[36] 房垚鑫,郭宝峰,马超. 基于改进点扩散函数的遥感图像超分辨率重建[J]. 激光技术,2019,43(5):713−718.

FANG Yaoxin,GUO Baofeng,MA Chao. Super–resolution reconstruction of remote sensing images based on the improved point spread function[J]. Laser Technology,2019,43(5):713−718.

[37] 冯丹青,田爱玲,刘丙才,等. 基于POCS的数字全息显微系统的超分辨实验研究[J]. 光子学报,2019,48(10):93−99.

FENG Danqing,TIAN Ailing,LIU Bingcai,et al. Super–resolution experimental study of digital holographic microscopy based on POCS[J]. Acta Photonica Sinica,2019,48(10):93−99.

[38] ABMA R,KABIR N. 3D interpolation of irregular data with a POCS algorithm[J]. Geophysics,2006,71(6):E91−E97.

[39] GAO Jianjun,STANTON A,NAGHIZADEH M,et al. Convergence improvement and noise attenuation considerations for beyond alias projection onto convex sets reconstruction[J]. Geophysical Prospecting,2013,61(Sup.1):138−151.

[40] 黄小刚,王一博,刘伊克,等. 半径–斜率域加权反假频地震数据重建[J]. 地球物理学报,2014,57(7):2278−2290.

HUANG Xiaogang,WANG Yibo,LIU Yike,et al. Weighted anti–alias seismic data reconstruction in R–P domain[J]. Chinese Journal of Geophysics,2014,57(7):2278−2290.

[41] 刁塑,张华,张恒琪,等. 利用抗假频凸集投影算法的规则缺失地震数据重建[J]. 石油地球物理勘探,2020,55(4):716−724.

DIAO Su,ZHANG Hua,ZHANG Hengqi,et al. Reconstructing regularly missing seismic data based on anti–aliasing POCS algorithm[J]. Oil Geophysical Prospecting,2020,55(4):716−724.

[42] 曾小牛,李夕海,刘继昊,等. 一种基于改进凸集投影原理的航空重力数据插值与去噪方法[J]. 武汉大学学报(信息科学版),2020,45(10):1555−1562.

ZENG Xiaoniu,LI Xihai,LIU Jihao,et al. Simultaneous interpolation and denoising method for airborne gravity data based on improved projection onto convex sets theory[J]. Geomatics and Information Science of Wuhan University,2020,45(10):1555−1562.

[43] SATO M,TAKAHASHI K,LI Yi. Optimization of data sampling and image reconstruction by GPR[C]//Proceedings of the 15th International Conference on Ground Penetrating Radar. Brussels:IEEE,2014:616−618.

[44] LI Yi,TAKAHASHI K,SATO M. A fast iterative interpolation method in f–k domain for 3–D irregularly sampled GPR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2016,9(1):9−17.

[45] 刘国昌,陈小宏,郭志峰,等. 基于Curvelet变换的缺失地震数据插值方法[J]. 石油地球物理勘探,2011,46(2):237−246.

LIU Guochang,CHEN Xiaohong,GUO Zhifeng,et al. Missing seismic data rebuilding by interpolation based on curvelet transform[J]. Oil Geophysical Prospecting,2011,46(2):237−246.

[46] YANG Pengliang,GAO Jinghuai,CHEN Wenchao. Curvelet–based POCS interpolation of nonuniformly sampled seismic records[J]. Journal of Applied Geophysics,2012,79:90−99.

[47] WANG Benfeng,WU Rushan,GENG Yu,et al. Dreamlet–based interpolation using POCS method[J]. Journal of Applied Geophysics,2014,109:256−265.

[48] KIM B,JEONG S,BYUN J. Trace interpolation for irregularly sampled seismic data using curvelet–transform–based projection onto convex sets algorithm in the frequency–wavenumber domain[J]. Journal of Applied Geophysics,2015,118:1−14.

[49] 曹静杰,王本锋. 基于一种改进凸集投影方法的地震数据同时插值和去噪[J]. 地球物理学报,2015,58(8):2935−2947.

CAO Jingjie,WANG Benfeng. An improved projection onto convex sets method for simultaneous interpolation and denoising[J]. Chinese Journal of Geophysics,2015,58(8):2935−2947.

[50] ZHANG Hua,CHEN Xiaohong,ZHANG Luoyi. 3D simultaneous seismic data reconstruction and noise suppression based on the curvelet transform[J]. Applied Geophysics,2017,14(1):87−95.

[51] 王汉闯,陶春辉,陈生昌,等. 基于稀疏约束的地震数据高效采集方法理论研究[J]. 地球物理学报,2016,59(11):4246−4265.

WANG Hanchuang,TAO Chunhui,CHEN Shengchang,et al. Study on highly efficient seismic data acquisition method and theory based on sparsity constraint[J]. Chinese Journal of Geophysics,2016,59(11):4246−4265.

[52] 温睿,刘国昌,冉扬. 压缩感知地震数据重建中的三个关键因素分析[J]. 石油地球物理勘探,2018,53(4):682−693.

WEN Rui,LIU Guochang,RAN Yang. Three key factors in seismic data reconstruction based on compressive sensing[J]. Oil Geophysical Prospecting,2018,53(4):682−693.

[53] CANDES E J,DONOHO D L. Ridgelets:A key to higher–dimensional intermittency?[J]. Philosophical Transactions of the Royal Society:Mathematical,Physical,and Engineering Sciences,1999,357(1760):2495–2509.

[54] CANDES E,DEMANET L,DONOHO D,et al. Fast discrete curvelet transforms[J]. Multiscale Modeling & Simulation,2006,5(3):861−899.

[55] 王宁,殷长春,高玲琦,等. 基于曲波变换的航空电磁数据去噪方法研究[J]. 地球物理学报,2020,63(12):4592−4603.

WANG Ning,YIN Changchun,GAO Lingqi,et al. Airborne EM denoising based on curvelet transform[J]. Chinese Journal of Geophysics,2020,63(12):4592−4603.

[56] GAO Jianjun,CHEN Xiaohong,LI Jingye,et al. Irregular seismic data reconstruction based on exponential threshold model of POCS method[J]. Applied Geophysics,2010,7(3):229−238.

[57] CANDES E J,ROMBERG J K. Signal recovery from random projections[J]. Computational Imaging III,2005,5674:76−86.

[58] 朱敏,倪万魁,苑康泽,等. 黄土渗透和强度性能的改良优化[J]. 煤田地质与勘探,2020,48(6):195−200.

ZHU Min,NI Wankui,YUAN Kangze,et al. Improvement and optimization of permeability and strength properties of loess[J]. Coal Geology & Exploration,2020,48(6):195−200.

[59] 刘慧,刘桂芹,宁殿艳,等. 基于VMD–DBN的矿井涌水量预测方法[J]. 煤田地质与勘探,2023,51(6):13−21.

LIU Hui,LIU Guiqin,NING Dianyan,et al. Mine water inrush prediction method based on VMD–DBN model[J]. Coal Geology & Exploration,2023,51(6):13−21.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.