Coal Geology & Exploration
Abstract
Breakthroughs in the exploration and production of deep coalbed methane (CBM) in the Daning-Jixian block on the eastern margin of the Ordos Basin exert a profound influence on the CBM industry, arousing extensive concern and follow-up. Although previous studies delved into the theoretical and technical challenges and corresponding solutions of deep CBM exploration and production, there is a lack a systematic summary of pilot tests for typical gas field exploitation. Through an in-depth dissection of the geological characteristics and challenges of cost-effective production of deep CBM, this study summarized the advances and outcomes of the pilot test projects in the Daning-Jixian block, determined the production patterns, and proposed strategies for cost-effective production. The results show that: (1) Deep coal seams exhibit extensive distributions, high gas content, rich free gas, favorable preservation conditions and coal structures, high brittleness index, and high sealing capacities of coal seam roof and floor. However, factors such as the presence of microstructures, extremely low permeability, and high total dissolved solids (TDS) content restrict the cost-effective production of deep CBM. (2) Different geological conditions result in significantly distinct production characteristics of gas wells. Therefore, by determining the production capacity of gas wells and the adaptive production technologies through pilot tests, the production risks caused by the high heterogeneity of coal seams can be effectively reduced using the progressive production mode. (3) Artificial gas reservoirs with highly bridged well patterns and fracturing networks, constructed based on the optimized geo-engineering integrated well pattern design, can maximize resource production and recovery. (4) The large-scale, high-injection-rate limit volume fracturing technology characterized by long horizontal sections, multiple sections and clusters, and large proppant volumes can increase effective stimulated reservoir volumes and well-controlled reserves, thus substantially enhancing single-well production. (5) deep CBM wells can achieve short-term rapid large-scale production growth owing to their production characteristics such as early gas production, rapid production addition, high initial gas production, and rapid decline. Nevertheless, long-term stable production of gas fields requires continuous drilling of new wells. (6) Given high early-stage production costs, it is necessary to constantly improve the engineering operation efficiency and reduce production costs in order to achieve cost-effective production. Overall, deep CBM resources, manifesting high quality and a production possibility, meet the requirements of rapid technological promotion and duplication. The deep CBM production in the Daning-Jixian block can provide a technical reference for the large-scale production of deep CBM in China's other blocks, holding great significance for accelerating the exploration and production of deep CBM in the country.
Keywords
eastern margin of the Ordos Basin, Daning-Jixian block, deep coalbed methane, pilot test, production pattern, limit volume fracturing
DOI
10.12363/issn.1001-1986.23.10.0645
Recommended Citation
NIE Zhihong, XU Fengyin, SHI Xiaosong,
et al.
(2024)
"Outcomes and implications of pilot tests for deep coalbed methane production on the eastern margin of the Ordos Basin,"
Coal Geology & Exploration: Vol. 52:
Iss.
2, Article 2.
DOI: 10.12363/issn.1001-1986.23.10.0645
Available at:
https://cge.researchcommons.org/journal/vol52/iss2/2
Reference
[1] 张道勇,朱杰,赵先良,等. 全国煤层气资源动态评价与可利用性分析[J]. 煤炭学报,2018,43(6):1598−1604.
ZHANG Daoyong,ZHU Jie,ZHAO Xianliang,et al. Dynamic assessment of coalbed methane resources and availability in China[J]. Journal of China Coal Society,2018,43(6):1598−1604.
[2] 秦勇,申建,李小刚. 中国煤层气资源控制程度及可靠性分析[J]. 天然气工业,2022,42(6):19−32.
QIN Yong,SHEN Jian,LI Xiaogang. Control degree and reliability of CBM resources in China[J]. Natural Gas Industry,2022,42(6):19−32.
[3] 杨华,刘新社. 鄂尔多斯盆地古生界煤成气勘探进展[J]. 石油勘探与开发,2014,41(2):129−137.
YANG Hua,LIU Xinshe. Progress of Paleozoic coal–derived gas exploration in Ordos Basin,West China[J]. Petroleum Exploration and Development,2014,41(2):129−137.
[4] 高德利,毕延森,鲜保安. 中国煤层气高效开发井型与钻完井技术进展[J]. 天然气工业,2022,42(6):1−18.
GAO Deli,BI Yansen,XIAN Bao’an. Technical advances in well types and drilling & completion for high–efficient development of coalbed methane in China[J]. Natural Gas Industry,2022,42(6):1−18.
[5] 孙德强,高文凯,郑军卫,等. 制约中国煤层气发展瓶颈问题及政策建议[J]. 中国能源,2021,43(1):33−38.
SUN Deqiang,GAO Wenkai,ZHENG Junwei,et al. Bottlenecks restricting the development of coalbed methane in China and policy recommendations[J]. Energy of China,2021,43(1):33−38.
[6] 秦勇,申建,史锐. 中国煤系气大产业建设战略价值与战略选择[J]. 煤炭学报,2022,47(1):371−387.
QIN Yong,SHEN Jian,SHI Rui. Strategic value and choice on construction of large CMG industry in China[J]. Journal of China Coal Society,2022,47(1):371−387.
[7] 聂志宏,时小松,孙伟,等. 大宁–吉县区块深层煤层气生产特征与开发技术对策[J]. 煤田地质与勘探,2022,50(3):193−200.
NIE Zhihong,SHI Xiaosong,SUN Wei,et al. Production characteristics of deep coalbed methane gas reservoirs in Daning–Jixian Block and its development technology countermeasures[J]. Coal Geology & Exploration,2022,50(3):193−200.
[8] 徐凤银,侯伟,熊先钺,等. 中国煤层气产业现状与发展战略[J]. 石油勘探与开发,2023,50(4):669−682.
XU Fengyin,HOU Wei,XIONG Xianyue,et al. The status and development strategy of coalbed methane industry in China[J]. Petroleum Exploration and Development,2023,50(4):669−682.
[9] 周德华,陈刚,陈贞龙,等. 中国深层煤层气勘探开发进展、关键评价参数与前景展望[J]. 天然气工业,2022,42(6):43−51.
ZHOU Dehua,CHEN Gang,CHEN Zhenlong,et al. Exploration and development progress,key evaluation parameters and prospect of deep CBM in China[J]. Natural Gas Industry,2022,42(6):43−51.
[10] 徐凤银,闫霞,李曙光,等. 鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策[J]. 煤田地质与勘探,2023,51(1):115−130.
XU Fengyin,YAN Xia,LI Shuguang,et al. Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos Basin[J]. Coal Geology & Exploration,2023,51(1):115−130.
[11] 刘顺喜,樊坤雨,金毅,等. 深部煤储层应力敏感性特征及其对煤层气产能的影响[J]. 煤田地质与勘探,2022,50(6):56−64.
LIU Shunxi,FAN Kunyu,JIN Yi,et al. Stress sensitivity characteristics of deep coal reservoirs and its influence on coalbed methane productivity[J]. Coal Geology & Exploration,2022,50(6):56−64.
[12] 曾雯婷,葛腾泽,王倩,等. 深层煤层气全生命周期一体化排采工艺探索:以大宁–吉县区块为例[J]. 煤田地质与勘探,2022,50(9):78−85.
ZENG Wenting,GE Tengze,WANG Qian,et al. Exploration of integrated technology for deep coalbed methane drainage in full life cycle:A case study of Daning–Jixian Block[J]. Coal Geology & Exploration,2022,50(9):78−85.
[13] 高玉巧,李鑫,何希鹏,等. 延川南深部煤层气高产主控地质因素研究[J]. 煤田地质与勘探,2021,49(2):21−27.
GAO Yuqiao,LI Xin,HE Xipeng,et al. Study on the main controlling geological factors of high yield deep CBM in Southern Yanchuan Block[J]. Coal Geology & Exploration,2021,49(2):21−27.
[14] 王绪性,王杏尊,郭布民,等. 鄂尔多斯盆地东部深部煤层气井压裂工艺及实践[J]. 煤田地质与勘探,2019,47(1):92−95.
WANG Xuxing,WANG Xingzun,GUO Bumin,et al. Technology and practice for deep CBM fracturing in eastern Ordos Basin[J]. Coal Geology & Exploration,2019,47(1):92−95.
[15] 王卫红,田景春,王峰. 鄂尔多斯盆地太原组煤层形成环境及分布特征研究[J]. 煤炭技术,2016,35(6):125−126.
WANG Weihong,TIAN Jingchun,WANG Feng. Research on sedimentary environment and distribution of coal seam of Taiyuan Formation in Erdos Basin[J]. Coal Technology,2016,35(6):125−126.
[16] 李倩,李童,蔡益栋,等. 煤层气储层水力裂缝扩展特征与控因研究进展[J/OL]. 煤炭学报,2023:1–19 [2023-11-23]. https://doi.org/10.13225/j.cnki.jccs.2023.0244.
LI Qian,LI Tong,CAI Yidong,et al. Research progress on hydraulic fracture characteristics and controlling factors of coalbed methane reservoirs[J/OL]. Journal of China Coal Society,2023:1–19 [2023-11-23]. https://doi.org/10.13225/j.cnki.jccs.2023.0244.
[17] 唐书恒,朱宝存,颜志丰. 地应力对煤层气井水力压裂裂缝发育的影响[J]. 煤炭学报,2011,36(1):65−69.
TANG Shuheng,ZHU Baocun,YAN Zhifeng. Effect of crustal stress on hydraulic fracturing in coalbed methane wells[J]. Journal of China Coal Society,2011,36(1):65−69.
[18] 付世豪,侯冰,夏阳,等. 多岩性组合层状储层一体化压裂裂缝扩展试验研究[J]. 煤炭学报,2021,46(增刊1):377−384.
FU Shihao,HOU Bing,XIA Yang,et al. Experimental research on hydraulic fracture propagation in integrated fracturing for layered formation with multi–lithology combination[J]. Journal of China Coal Society,2021,46(Sup.1):377−384.
[19] 秦勇,申建. 论深部煤层气基本地质问题[J]. 石油学报,2016,37(1):125−136.
QIN Yong,SHEN Jian. On the fundamental issues of deep coalbed methane geology[J]. Acta Petrolei Sinica,2016,37(1):125−136.
[20] 徐凤银,闫霞,林振盘,等. 我国煤层气高效开发关键技术研究进展与发展方向[J]. 煤田地质与勘探,2022,50(3):1−14.
XU Fengyin,YAN Xia,LIN Zhenpan,et al. Research progress and development direction of key technologies for efficient coalbed methane development in China[J]. Coal Geology & Exploration,2022,50(3):1−14.
[21] 叶建平,侯淞译,张守仁. “十三五”期间我国煤层气勘探开发进展及下一步勘探方向[J]. 煤田地质与勘探,2022,50(3):15−22.
YE Jianping,HOU Songyi,ZHANG Shouren. Progress of coalbed methane exploration and development in China during the 13th Five–Year Plan period and the next exploration direction[J]. Coal Geology & Exploration,2022,50(3):15−22.
[22] 姚红生,陈贞龙,何希鹏,等. 深部煤层气“有效支撑”理念及创新实践:以鄂尔多斯盆地延川南煤层气田为例[J]. 天然气工业,2022,42(6):97−106.
YAO Hongsheng,CHEN Zhenlong,HE Xipeng,et al. “Effective support”concept and innovative practice of deep CBM in South Yanchuan gas field of the Ordos Basin[J]. Natural Gas Industry,2022,42(6):97−106.
[23] 光新军,叶海超,蒋海军. 北美页岩油气长水平段水平井钻井实践与启示[J]. 石油钻采工艺,2021,43(1):1−6.
GUANG Xinjun,YE Haichao,JIANG Haijun. Drilling practice of shale oil & gas horizontal wells with long horizontal section in the North America and its enlightenment[J]. Oil Drilling & Production Technology,2021,43(1):1−6.
[24] 韩来聚,牛洪波. 对长水平段水平井钻井技术的几点认识[J]. 石油钻探技术,2014,42(2):7−11.
HAN Laiju,NIU Hongbo. Understandings on drilling technology for long horizontal section wells[J]. Petroleum Drilling Techniques,2014,42(2):7−11.
[25] 杨陆武,崔玉环,王国玲. 影响中国煤层气产业发展的技术和非技术要素分析[J]. 煤炭学报,2021,46(8):2400−2411.
YANG Luwu,CUI Yuhuan,WANG Guoling. Analysis of technical and regulational aspects affecting China CBM progresses[J]. Journal of China Coal Society,2021,46(8):2400−2411.
[26] 沈建中,龙志平. 延川南煤层气低成本高效钻井技术探索与实践[J]. 石油钻探技术,2015,43(5):69−74.
SHEN Jianzhong,LONG Zhiping. Research and application of low cost and efficient CBM drilling technology in South Yanchuan[J]. Petroleum Drilling Techniques,2015,43(5):69−74.
[27] 王益山,王合林,刘大伟,等. 中国煤层气钻井技术现状及发展趋势[J]. 天然气工业,2014,34(8):87−91.
WANG Yishan,WANG Helin,LIU Dawei,et al. State–of–the–art and developing trend of CBM drilling technologies in China[J]. Natural Gas Industry,2014,34(8):87−91.
[28] 胡焮彭,赵永哲,徐堪社,等. 黔北矿区煤层顶板水平井钻井关键技术[J]. 煤田地质与勘探,2020,48(1):227−232.
HU Xinpeng,ZHAO Yongzhe,XU Kanshe,et al. The key technology for drilling horizontal well in coal seam roof in Qianbei mining area[J]. Coal Geology & Exploration,2020,48(1):227−232.
[29] 王维,韩金良,王玉斌,等. 大宁–吉县区块深层煤岩气水平井钻井技术[J/OL]. 石油机械,2023:1–11 [2023-11-23]. http://kns.cnki.net/kcms/detail/42.1246.TE.20230717.2006.002.html.
WANG Wei,HAN Jinliang,WANG Yubin,et al. Drilling technology for deep coal gas horizontal wells in Daning–Jixian Block[J/OL]. China Petroleum Machinery,2023:1–11 [2023-11-23]. http://kns.cnki.net/kcms/detail/42.1246.TE.20230717.2006.002.html.
[30] 闫霞,徐凤银,聂志宏,等. 深部微构造特征及其对煤层气高产“甜点区”的控制:以鄂尔多斯盆地东缘大吉地区为例[J]. 煤炭学报,2021,46(8):2426−2439.
YAN Xia,XU Fengyin,NIE Zhihong,et al. Microstructure characteristics of Daji area in east Ordos Basin and its control over the high yield dessert of CBM[J]. Journal of China Coal Society,2021,46(8):2426−2439.
[31] 姚帅,吴财芳,杨长青,等. 黔西比德–三塘盆地煤储层压力特征及差异成因研究[J]. 煤炭科学技术,2019,47(4):162−168.
YAO Shuai,WU Caifang,YANG Changqing,et al. Study on pressure characteristics and difference causes of coal reservoirs in Bide–Santang Basin of western Guizhou[J]. Coal Science and Technology,2019,47(4):162−168.
[32] 邹才能,丁云宏,卢拥军,等. “人工油气藏”理论、技术及实践[J]. 石油勘探与开发,2017,44(1):144−154.
ZOU Caineng,DING Yunhong,LU Yongjun,et al. Concept,technology and practice of“man–made reservoirs” development[J]. Petroleum Exploration and Development,2017,44(1):144−154.
[33] 肖佳林,游园,朱海燕,等. 重庆涪陵国家级页岩气示范区开发调整井压裂工艺关键技术[J]. 天然气工业,2022,42(11):58−65.
XIAO Jialin,YOU Yuan,ZHU Haiyan,et al. Key technologies for development adjustment well fracturing in Chongqing Fuling National Shale Gas Demonstration Area[J]. Natural Gas Industry,2022,42(11):58−65.
[34] 李跃纲,宋毅,黎俊峰,等. 北美页岩气水平井压裂井间干扰研究现状与启示[J]. 天然气工业,2023,43(5):34−46.
LI Yuegang,SONG Yi,LI Junfeng,et al. Research status and implications of well interference in shale gas horizontal well fracturing in North America[J]. Natural Gas Industry,2023,43(5):34−46.
[35] 樊怀才,张鉴,岳圣杰,等. 页岩气平台式井组井间干扰影响因素分析及井距优化[J]. 天然气地球科学,2022,33(4):512−519.
FAN Huaicai,ZHANG Jian,YUE Shengjie,et al. Analysis of influencing factors of interwell interference in shale gas well groups and well spacing optimization[J]. Natural Gas Geoscience,2022,33(4):512−519.
[36] 张金川,徐波,聂海宽,等. 中国页岩气资源勘探潜力[J]. 天然气工业,2008,28(6):136−140.
ZHANG Jinchuan,XU Bo,NIE Haikuan,et al. Exploration potential of shale gas resources in China[J]. Natural Gas Industry,2008,28(6):136−140.
[37] 李景明,李剑,谢增业,等. 中国天然气资源研究[J]. 石油勘探与开发,2005,32(2):15−18.
LI Jingming,LI Jian,XIE Zengye,et al. Chinese natural gas resources[J]. Petroleum Exploration and Development,2005,32(2):15−18.
Click below to download English version.
Outcomes implications of pilot tests for deep coalbed methane production on the eastern margin of the Ordos Basin.PDF (1171 kB)Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons