Coal Geology & Exploration
Abstract
Temperature acts as an important factor affecting the gas-bearing properties of deep coal reservoirs, further affecting the development performance of deep coalbed methane (CBM). Therefore, ascertaining the geothermal conditions of coal reservoirs and their effects on the gas-bearing properties of deep coal reservoirs is critical to the systemic understanding of the enrichment characteristics and production patterns of deep CBM. For coal seam No.9 in the Taiyuan Formation within the Ningwu Basin, over 90% of the area has burial depths exceeding 1000 m. In the hinterland of the basin, coal seams generally exhibit burial depths greater than 1500 m, with a maximum exceeding 2500 m. These findings suggest typical deep CBM. Based on the log data, experiments data, and well test data, this study determined the geothermal field characteristics of the coal reservoirs in the Ningwunan block and their effects on the gas-bearing properties. The results show that coal seam No.9 in the Ningwunan block exhibits reservoir temperature ranging between 15.5℃ and 40.1℃ and there is a significant positive correlation between the reservoir temperature and the burial depth. The coal reservoirs have geothermal gradients ranging from 1.27 to 1.95℃/hm, with an average of 1.52℃/hm, indicating the characteristics of low geothermal fields. These reservoirs demonstrate gas saturation ranging from 40.1% to 93.7%, with an average of 71.7%, suggesting low gas saturation of the deep coal reservoirs. With an increase in the burial depth, the coal reservoir temperature increases slowly due to the low geothermal gradients. This results in significantly reduced negative effects of temperature on the adsorption capacity of deep coal reservoirs in the study area compared to deep CBM-bearing blocks at similar burial depths, such as Daning-Jixian and Linxing. Accordingly, the depth at which adsorbed gas transitions into free gas increases for coal reservoirs in the study area, with the transition ratio between both types of gases decreasing. Low temperature serves as an important factor affecting the gas-bearing properties of deep coal reservoirs in the study area, further influencing their recoverable degree. Therefore, the geothermal conditions of coal reservoirs should be highlighted in the exploration and recovery of deep CBM.
Keywords
Ningwu Basin, deep coalbed methane, geothermal gradient, geothermal field, gas-bearing properties
DOI
10.12363/issn.1001-1986.23.07.0408
Recommended Citation
XI Zhaodong, TANG Shuheng, LIU Zhong,
et al.
(2024)
"Deep coal reservoirs in the Ningwu Basin: Geothermal field characteristics and their effects on gas-bearing properties,"
Coal Geology & Exploration: Vol. 52:
Iss.
2, Article 11.
DOI: 10.12363/issn.1001-1986.23.07.0408
Available at:
https://cge.researchcommons.org/journal/vol52/iss2/11
Reference
[1] 徐凤银,侯伟,熊先钺,等. 中国煤层气产业现状与发展战略[J]. 石油勘探与开发,2023,50(4):669−682.
XU Fengyin,HOU Wei,XIONG Xianyue,et al. The status and development strategy of coalbed methane industry in China[J]. Petroleum Exploration and Development,2023,50(4):669−682.
[2] 秦勇,申建,史锐. 中国煤系气大产业建设战略价值与战略选择[J]. 煤炭学报,2022,47(1):371−387.
QIN Yong,SHEN Jian,SHI Rui. Strategic value and choice on construction of large CMG industry in China[J]. Journal of China Coal Society,2022,47(1):371−387.
[3] 秦勇,申建. 论深部煤层气基本地质问题[J]. 石油学报,2016,37(1):125−136.
QIN Yong,SHEN Jian. On the fundamental issues of deep coalbed methane geology[J]. Acta Petrolei Sinica,2016,37(1):125−136.
[4] 庚勐,陈浩,陈艳鹏,等. 第4轮全国煤层气资源评价方法及结果[J]. 煤炭科学技术,2018,46(6):64−68.
GENG Meng,CHEN Hao,CHEN Yanpeng,et al. Methods and results of the fourth round national CBM resources evaluation[J]. Coal Science and Technology,2018,46(6):64−68.
[5] 徐凤银,王成旺,熊先钺,等. 深部(层)煤层气成藏模式与关键技术对策:以鄂尔多斯盆地东缘为例[J]. 中国海上油气,2022,34(4):30−42.
XU Fengyin,WANG Chengwang,XIONG Xianyue,et al. Deep (layer) coalbed methane reservoir forming modes and key technical countermeasures:Taking the eastern margin of Ordos Basin as an example[J]. China Offshore Oil and Gas,2022,34(4):30−42.
[6] 李曙光,王成旺,王红娜,等. 大宁–吉县区块深层煤层气成藏特征及有利区评价[J]. 煤田地质与勘探,2022,50(9):59−67.
LI Shuguang,WANG Chengwang,WANG Hongna,et al. Reservoir forming characteristics and favorable area evaluation of deep coalbed methane in Daning–Jixian Block[J]. Coal Geology & Exploration,2022,50(9):59−67.
[7] 闫霞,徐凤银,张雷,等. 微构造对煤层气的控藏机理与控产模式[J]. 煤炭学报,2022,47(2):893−905.
YAN Xia,XU Fengyin,ZHANG Lei,et al. Reservoir–controlling mechanism and production–controlling patterns of microstructure to coalbed methane[J]. Journal of China Coal Society,2022,47(2):893−905.
[8] 周德华,陈刚,陈贞龙,等. 中国深层煤层气勘探开发进展、关键评价参数与前景展望[J]. 天然气工业,2022,42(6):43−51.
ZHOU Dehua,CHEN Gang,CHEN Zhenlong,et al. Exploration and development progress,key evaluation parameters and prospect of deep CBM in China[J]. Natural Gas Industry,2022,42(6):43−51.
[9] 何发岐,董昭雄. 深部煤层气资源开发潜力:以鄂尔多斯盆地大牛地气田为例[J]. 石油与天然气地质,2022,43(2):277−285.
HE Faqi,DONG Zhaoxiong. Development potential of deep coalbed methane:A case study in the Daniudi gas field,Ordos Basin[J]. Oil & Gas Geology,2022,43(2):277−285.
[10] 何发岐,董昭雄,赵兰,等. 深部煤层游离气形成机理及资源意义[J]. 断块油气田,2021,28(5):604−608.
HE Faqi,DONG Zhaoxiong,ZHAO Lan,et al. Formation mechanism and resource significance of free gas in deep coalbed[J]. Fault–Block Oil & Gas Field,2021,28(5):604−608.
[11] 李勇,徐立富,张守仁,等. 深煤层含气系统差异及开发对策[J]. 煤炭学报,2023,48(2):900−917.
LI Yong,XU Lifu,ZHANG Shouren,et al. Gas bearing system difference in deep coal seams and corresponded development strategy[J]. Journal of China Coal Society,2023,48(2):900−917.
[12] LIU Dameng,JIA Qifeng,CAI Yidong,et al. A new insight into coalbed methane occurrence and accumulation in the Qinshui Basin,China[J]. Gondwana Research,2022,111:280−297.
[13] 王青青,孟艳军,闫涛滔,等. 不同煤阶煤储层吸附/解吸特征差异及其对产能的影响[J]. 煤田地质与勘探,2023,51(5):66−77.
WANG Qingqing,MENG Yanjun,YAN Taotao,et al. Differences in the adsorption/desorption characteristics of coal reservoirs with different coal ranks and their effects on the reservoir productivity[J]. Coal Geology & Exploration,2023,51(5):66−77.
[14] WANG Zhaofeng,SI Shasha,CUI Yongjie,et al. Study on adsorption characteristics of deep coking coal based on molecular simulation and experiments[J]. ACS Omega,2023,8(3):3129−3147.
[15] XIN Di,ZHANG Songhang,TANG Shuheng,et al. Influence of rock properties and prediction on the methane storage capacity in marine–continental transitional shale and coal from northern China[J]. Journal of Asian Earth Sciences,2023,254:105740.
[16] GENSTERBLUM Y,MERKEL A,BUSCH A,et al. High–pressure CH4 and CO2 sorption isotherms as a function of coal maturity and the influence of moisture[J]. International Journal of Coal Geology,2013,118:45−57.
[17] 孟召平,禹艺娜,李国富,等. 沁水盆地煤储层地温场条件及其低地温异常区形成机理[J]. 煤炭学报,2023,48(1):307−316.
MENG Zhaoping,YU Yina,LI Guofu,et al. Geothermal field condition of coal reservoir and its genetic mechanism of low geothermal anomaly area in the Qinshui Basin[J]. Journal of China Coal Society,2023,48(1):307−316.
[18] 赵国春,孙敏,WILDE S A. 华北克拉通基底构造单元特征及早元古代拼合[J]. 中国科学(D辑:地球科学),2002,32(7):538−549.
ZHAO Guochun,SUN Min,WILDE S A. Major tectonic units of the North China Craton and their Paleoproterozoic assembly[J]. Science China (Series D:Earth Sciences),2002,32(7):538−549.
[19] 黄志刚,郑庆荣,任战利,等. 宁武盆地中–新生代构造演化的裂变径迹证据[J]. 现代地质,2022,36(4):1043−1051.
HUANG Zhigang,ZHENG Qingrong,REN Zhanli,et al. Fission track dating of Mesozoic–Cenozoic tectonic evolution in Ningwu Basin[J]. Geoscience,2022,36(4):1043−1051.
[20] 刘池洋,王建强,张东东,等. 鄂尔多斯盆地油气资源丰富的成因与赋存–成藏特点[J]. 石油与天然气地质,2021,42(5):1011−1029.
LIU Chiyang,WANG Jianqiang,ZHANG Dongdong,et al. Genesis of rich hydrocarbon resources and their occurrence and accumulation characteristics in the Ordos Basin[J]. Oil & Gas Geology,2021,42(5):1011−1029.
[21] 姜福杰,贾承造,庞雄奇,等. 鄂尔多斯盆地上古生界全油气系统成藏特征与天然气富集地质模式[J]. 石油勘探与开发,2023,50(2):250−261.
JIANG Fujie,JIA Chengzao,PANG Xiongqi,et al. Upper Paleozoic total petroleum system and geological model of natural gas enrichment in Ordos Basin,NW China[J]. Petroleum Exploration and Development,2023,50(2):250−261.
[22] 田文广,汤达祯,孙斌,等. 宁武盆地南部煤层气富集的主控因素[J]. 天然气工业,2010,30(6):22−25.
TIAN Wenguang,TANG Dazhen,SUN Bin,et al. Major controlling factors of coalbed methane enrichment in the southern Ningwu Basin[J]. Natural Gas Industry,2010,30(6):22−25.
[23] 赵国飞,康天合,郭俊庆,等. 山西沉积环境对煤层气盖层叠置类型及分布的控制[J]. 煤矿安全,2020,51(2):159−164.
ZHAO Guofei,KANG Tianhe,GUO Junqing,et al. Control of superimposing types and distribution of coalbed methane caprock by sedimentary environments in Shanxi Province[J]. Safety in Coal Mines,2020,51(2):159−164.
[24] 张祎然,梁学堂,全浩理,等. 井温测井数据在湖北中深层地热勘查中的多效应用[J]. 资源环境与工程,2022,36(6):822−827.
ZHANG Yiran,LIANG Xuetang,QUAN Haoli,et al. Various application of well temperature logging data in middle–deep geothermal exploration in Hubei Province[J]. Resources Environment & Engineering,2022,36(6):822−827.
[25] 孙占学,张文,胡宝群,等. 沁水盆地地温场特征及其与煤层气分布关系[J]. 科学通报,2005,50(增刊1):93−98.
SUN Zhanxue,ZHANG Wen,HU Baoqun,et al. Characteristics of geothermal field in Qinshui Basin and its relationship with distribution of coalbed methane[J]. Chinese Science Bulletin,2005,50(Sup.1):93−98.
[26] 杨昌永,郝春生,李瑾,等. 寺家庄井田地温负异常及其主控因素[J]. 煤田地质与勘探,2018,46(6):74−80.
YANG Changyong,HAO Chunsheng,LI Jin,et al. Negative geothermal anomaly and its main geological controlling factors in Sijiazhuang minefield[J]. Coal Geology & Exploration,2018,46(6):74−80.
[27] 曹瑜,邹声华,韩巧云. 三都矿区地温分布规律[J]. 矿业工程研究,2015,30(3):71−75.
CAO Yu,ZOU Shenghua,HAN Qiaoyun. Research on geothermal distribution of Sandu coal field[J]. Mineral Engineering Research,2015,30(3):71−75.
[28] 张连强. 顺和西煤矿区地温特征及其影响因素分析[J]. 中国煤炭地质,2012,24(7):29−33.
ZHANG Lianqiang. Geotemperature characteristics and impacts from geological factors in Shunhexi Mine Area[J]. Coal Geology of China,2012,24(7):29−33.
[29] BUSTIN R M,CLARKSON C R. Geological controls on coalbed methane reservoir capacity and gas content[J]. International Journal of Coal Geology,1998,38(1/2):3−26.
[30] 赵丽娟,秦勇,申建. 深部煤层吸附行为及含气量预测模型[J]. 高校地质学报,2012,18(3):553−557.
ZHAO Lijuan,QIN Yong,SHEN Jian. Adsorption behavior and abundance predication model of deep coalbed methane[J]. Geological Journal of China Universities,2012,18(3):553−557.
[31] ZHANG Xiaoyu,CAI Yongbo,ZHOU Tianbai,et al. Thermodynamic characteristics of methane adsorption on coals from China with selected metamorphism degrees:Considering the influence of temperature,moisture content,and in situ modification[J]. Fuel,2023,342:127771.
[32] XIAO Tong,LI Shugang,LONG Hang,et al. Experimental research on adsorption characteristics of N2,CH4,and CO2 in coal under different temperatures and gas pressures[J]. Energy Science & Engineering,2022,11(2):637−653.
[33] 郭广山,柳迎红,李林涛. 鄂尔多斯盆地东缘北段煤层含气量变化规律及控制因素[J]. 天然气地球科学,2021,32(3):416−422.
GUO Guangshan,LIU Yinghong,LI Lintao. Study on variation law and controlling factors of coal gas content in north section of east margin of Ordos Basin[J]. Natural Gas Geoscience,2021,32(3):416−422.
[34] YAN Taotao,HE Shan,ZHENG Shuai,et al. Critical tectonic events and their geological controls on deep buried coalbed methane accumulation in Daning–Jixian Block,eastern Ordos Basin[J]. Frontiers of Earth Science,2023,17(1):197−217.
[35] 黄志刚,郑庆荣,任战利,等. 宁武盆地及周缘岩体裂变径迹对山西地块中–新生代构造演化的约束[J]. 地质学报,2023,97(5):1407−1417.
HUANG Zhigang,ZHENG Qingrong,REN Zhanli,et al. Fission track study of the Ningwu Basin and its peripheral plutons:Implications for Mesozoic–Cenozoic tectonic evolution of the Shanxi Block[J]. Acta Geologica Sinica,2023,97(5):1407−1417.
[36] 郗兆栋,唐书恒,刘忠,等. 宁武盆地南部深部煤层气临界深度及成藏特征[J]. 天然气工业,2024,441(1):41−51.
XI Zhaodong,TANG Shuheng,LIU Zhong,et al. Evaluation of critical depth and reservoir formation characteristics of deep coalbed methane in Ningwunan Block[J]. Natural Gas Industry,2024,44(1):41−51.
[37] 聂志宏,时小松,孙伟,等. 大宁–吉县区块深层煤层气生产特征与开发技术对策[J]. 煤田地质与勘探,2022,50(3):193−200.
NIE Zhihong,SHI Xiaosong,SUN Wei,et al. Production characteristics of deep coalbed methane gas reservoirs in Daning–Jixian Block and its development technology countermeasures[J]. Coal Geology & Exploration,2022,50(3):193−200.
[38] 康永尚,邓泽,皇甫玉慧,等. 中煤阶煤层气高饱和–超饱和带的成藏模式和勘探方向[J]. 石油学报,2020,41(12):1555−1566.
KANG Yongshang,DENG Ze,HUANGFU Yuhui,et al. Accumulation model and exploration direction of high– to over–saturation zone of the midium–rank coalbed methane[J]. Acta Petrolei Sinica,2020,41(12):1555−1566.
[39] 赵丽娟,秦勇,WANG G,等. 高温高压条件下深部煤层气吸附行为[J]. 高校地质学报,2013,19(4):648−654.
ZHAO Lijuan,QIN Yong,WANG G,et al. Adsorption behavior of deep coalbed methane under high temperatures and pressures[J]. Geological Journal of China Universities,2013,19(4):648−654.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons