Coal Geology & Exploration
Abstract
Significance Drill rods are recognized as core tools in drilling engineering, and their performance exerts a significant influence on drilling efficiency and safety. Over recent years, applying biomimetic technologies to drill rod design has gradually emerged as a hot research topic. By imitating the remarkable structures, morphologies, and material properties of living organisms in nature, biomimetic technologies provide entirely new philosophies and approaches for the innovative design of drill rods. Advances This study summarizes the advances in research on biomimetic technologies for drill rods in terms of the biomimetic design of structures, morphologies, and materials. Regarding the biomimetic design of structures, highly resilient biomimetic drill rods that prevent drilling tool accidents and have flexible structures have been developed by imitating the spinal structural characteristics of quadruped mammals. Concerning the biomimetic design of morphologies, highly wear-resistant biomimetic drill rods with uneven surfaces have been developed by imitating the non-smooth surface morphologies of living organisms such as dung beetles and shells. For the biomimetic design of materials, high-strength, corrosion-resistant, and highly wear-resistant biomimetic drill rods with gradients and fiber material characteristics have been developed by imitating Scapharca subcrenata and Crustacea for their composite materials with biological gradients and bamboo for their biological fiber-reinforced structural characteristics. Prospects Nevertheless, current research has limitations in terms of the integration of theory and practice and integrated multifunctional design. Future biomimetic technologies for drill rods will develop toward the integration of high strength, light weight, and wear/corrosion/fatigue resistance, as well as intelligent structure and information transmission, ultimately providing a basis and guidance for the innovation and development of drill rod technology.
Keywords
drill rod, biomimetic technique, information transmission, development trend
DOI
10.12363/issn.1001-1986.24.10.0644
Recommended Citation
W J.
(2024)
"Biomimetic technologies for drill rods: Advances in research and development trends,"
Coal Geology & Exploration: Vol. 52:
Iss.
12, Article 20.
DOI: 10.12363/issn.1001-1986.24.10.0644
Available at:
https://cge.researchcommons.org/journal/vol52/iss12/20
Reference
[1] 李欣业,高赫远,郭晓强,等. 钻柱振动的主被动控制研究进展与展望[J]. 天然气工业,2024,44(6):98−110.
LI Xinye,GAO Heyuan,GUO Xiaoqiang,et al. Research progress and prospect in active and passive control of drill string vibration[J]. Natural Gas Industry,2024,44(6):98−110.
[2] RITTO T G,GHANDCHI-TEHRANI M. Active control of stick-slip torsional vibrations in drill-strings[J]. Journal of Vibration and Control,2019,25(1):194−202.
[3] 金列俊,詹建明,陈俊华,等. 基于一维卷积神经网络的钻杆故障诊断[J]. 浙江大学学报(工学版),2020,54(3):467−474.
JIN Liejun,ZHAN Jianming,CHEN Junhua,et al. Drill pipe fault diagnosis method based on one-dimensional convolutional neural network[J]. Journal of Zhejiang University (Engineering Science),2020,54(3):467−474.
[4] SHVETSOV O V,ALFIMOV A D,ERMAKOV B S,et al. Effect of microstructure on the fracture behavior and fatigue properties of drill pipes from aluminum alloys 1953 and 2024[J]. Metal Science and Heat Treatment,2024,66(3):130−136.
[5] 冯春,张凯,张芳芳,等. 固溶时效处理对钻杆用Ti-6Al-4V-1Mo-1Zr合金组织及性能的影响[J]. 石油学报,2024,45(5):866−874.
FENG Chun,ZHANG Kai,ZHANG Fangfang,et al. Effect of solution aging heat treatment on microstructure and properties of Ti-6Al-4V-1Mo-1Zr alloy for drill pipe[J]. Acta Petrolei Sinica,2024,45(5):866−874.
[6] SHEMYAKINSKIY B,LAMONOV A,YAKHIMOVICH V,et al. Tribotechnic and structure characteristics evaluation for light-alloy drill pipe coatings[J]. Materials Today:Proceedings,2020,30:578−582.
[7] 蒋开勇. 主动钻杆公接头加工工艺技术研究[J]. 煤矿机械,2024,45(9):100−102.
JIANG Kaiyong. Research on processing technology of active drill pipe male joint[J]. Coal Mine Machinery,2024,45(9):100−102.
[8] 陈锋,朱巍,狄勤丰,等. 适合特深井的双台肩钻杆接头副台肩间隙的确定[J]. 天然气工业,2020,40(7):90−96.
CHEN Feng,ZHU Wei,DI Qinfeng,et al. Determination of secondary shoulder clearance of double-shoulder tool joints suitable for extra-deep wells[J]. Natural Gas Industry,2020,40(7):90−96.
[9] 冯西桥,赵红平,李博. 仿生力学前沿[M]. 上海:上海交通大学出版社,2020.
[10] 高福聚,刘锡良. 浅议空间结构仿生工程学研究中的特征标度问题[J]. 空间结构,2001,7(1):44−50.
[11] 孙荣军,谷拴成,谢晓波,等. 仿生冲击挤密钻头的研究[J]. 煤田地质与勘探,2018,46(3):174−178.
SUN Rongjun,GU Shuancheng,XIE Xiaobo,et al. Research on bionic impact compacting bits[J]. Coal Geology & Exploration,2018,46(3):174−178.
[12] KAMIMURA T,AOI S,HIGURASHI Y,et al. Dynamical determinants enabling two different types of flight in cheetah gallop to enhance speed through spine movement[J]. Scientific Reports,2021,11(1):9631.
[13] GOTO M,KAWAI M,NAKATA M,et al. Distribution of muscle fibers in skeletal muscles of the cheetah (Acinonyx jubatus)[J]. Mammalian Biology,2013,78(2):127−133.
[14] HILDEBRAND M. Further studies on locomotion of the cheetah[J]. Journal of Mammalogy,1961,42(1):84.
[15] BERTRAM J E A,GUTMANN A. Motions of the running horse and cheetah revisited:Fundamental mechanics of the transverse and rotary gallop[J]. Journal of the Royal Society,Interface,2009,6(35):549−559.
[16] 刘宁,江沛,柏龙,等. 四足机器人柔性脊柱的仿生机理与结构研究综述[J]. 机械设计与研究,2018,34(5):37−43.
LIU Ning,JIANG Pei,BAI Long,et al. Review on bionics mechanism and structure of flexible spine for quadruped robots[J]. Machine Design & Research,2018,34(5):37−43.
[17] BROOKE M H. Investigation of an articulated spine in a quadruped robotic system[D]. Michigan:University of Michigan,2011.
[18] SIMON P. Military robotics:Latest trends and spatial grasp solutions[J]. International Journal of Advanced Research in Artificial Intelligence,2015,4(4):9−18.
[19] KAWASAKI R,SATO R,KAZAMA E,et al. Development of a flexible coupled spine mechanism for a small quadruped robot[C]//2016 IEEE International Conference on Robotics and Biomimetics (ROBIO). Qingdao,China. IEEE,2016:71–76.
[20] PUSEY J L,YOO J H. Validation and verification of a high-fidelity computational model for a bounding robot’s parallel actuated elastic spine[C]//Unmanned Systems Technology XVI. Baltimore,Maryland,USA. SPIE,2014:90840G.
[21] 张秀丽,谭小康,吴海波. 可变刚度的四足机器人被动柔顺脊柱设计与应用[J]. 北京交通大学学报,2018,42(6):111−118.
ZHANG Xiuli,TAN Xiaokang,WU Haibo. Design and application of passive compliant spine of quadruped robot with variable stiffness[J]. Journal of Beijing Jiaotong University,2018,42(6):111−118.
[22] 刘宁. 具柔性脊柱的可变步幅四足机器人设计与分析[D]. 重庆:重庆大学,2019.
LIU Ning. Design and analysis of variable stride quadruped robot with flexible spine[D]. Chongqing:Chongqing University,2019.
[23] 钱伟,王志瑞,苏波,等. 变刚度四足机器人的连续型仿生脊柱设计[J]. 中南大学学报 (自然科学版),2023,54(8):3112−3121.
QIAN Wei,WANG Zhirui,SU Bo,et al. Mechanical design of a variable stiffness continuous bionic spine for a quadruped robot[J]. Journal of Central South University (Science and Technology),2023,54(8):3112−3121.
[24] WANG Chuanliu,JU Pei. Design and performance research of flexible drill pipe joint based on bionic theory[J]. Geofluids,2021,2021:9661388.
[25] 王传留,田东庄,马少明,等. 具有脊柱结构特性的仿生公接头及其加工工序:CN109944557B[P]. 2020-07-10.
[26] 董昌乐. “骨筋” 特性仿生钻杆公接头断裂防掉技术[J]. 煤矿安全,2023,54(10):226−231.
DONG Changle. Falling prevention technology after outside joint breaking of bionic drill pipe with “bone tendon” characteristics[J]. Safety in Coal Mines,2023,54(10):226−231.
[27] 王家乐,杨虎伟,居培,等. 矿用仿生双连接钻杆设计及性能试验研究[J]. 煤矿机电,2023,44(4):1−5.
WANG Jiale,YANG Huwei,JU Pei,et al. Design and performance experimental study of mining biomimetic double connection drill pipe[J]. Colliery Mechanical & Electrical Technology,2023,44(4):1−5.
[28] 王天琦,沙兵兵,林威,等. 一种超短半径仿生柔性钻杆:CN118223800A[P]. 2024-06-21.
[29] 高科,孙友宏,高润峰,等. 仿生非光滑理论在钻井工程中的应用与前景[J]. 石油勘探与开发,2009,36(4):519−522.
GAO Ke,SUN Youhong,GAO Runfeng,et al. Application and prospect of bionic non-smooth theory in drilling engineering[J]. Petroleum Exploration and Development,2009,36(4):519−522.
[30] 任露泉,杨卓娟,韩志武. 生物非光滑耐磨表面仿生应用研究展望[J]. 农业机械学报,2005,36(7):144−147.
REN Luquan,YANG Zhuojuan,HAN Zhiwu. Non-smooth wearable surfaces of living creatures and their bionic application[J]. Transactions of the Chinese Society of Agricultural Machinery,2005,36(7):144−147.
[31] 徐良,高科. 仿生非光滑原理及其在金刚石钻头中的应用[J]. 超硬材料工程,2024,36(1):14−20.
XU Liang,GAO Ke. Bionic non-smooth principle and the application in diamond bits[J]. Superhard Material Engineering,2024,36(1):14−20.
[32] 傅舟渔,沈潇,孙朝阳. 基于仿生非光滑表面的采煤机滚筒设计[J]. 煤矿机械,2013,34(6):8−11.
FU Zhouyu,SHEN Xiao,SUN Zhaoyang. Design of coal mining machine’s platen based on bionic non-smooth surface[J]. Coal Mine Machinery,2013,34(6):8−11.
[33] 秦立果,龚朝永,孙红江,等. 非光滑表面减阻研究进展[J]. 表面技术,2022,51(8):107−122.
QIN Liguo,GONG Chaoyong,SUN Hongjiang,et al. Review of research on drag reduction of non-smooth surface[J]. Surface Technology,2022,51(8):107−122.
[34] 陶敏. 凹坑形仿生非光滑表面减阻和遗传优化研究[D]. 长春:吉林大学,2007.
TAO Min. Study on drag reduction and genetic optimization of concave bionic non-smooth surface[D]. Changchun:Jilin University,2007.
[35] NAKADA M. Trends in engine technology and tribology[J]. Tribology International,1994,27(1):3−8.
[36] RONEN A,ETSION I,KLIGERMAN Y. Friction-reducing surface-texturing in reciprocating automotive components[J]. Tribology Transactions,2001,44(3):359−366.
[37] RYK G,KLIGERMAN Y,ETSION I. Experimental investigation of laser surface texturing for reciprocating automotive components[J]. Tribology Transactions,2002,45(4):444−449.
[38] RAMESH A,AKRAM W,MISHRA S P,et al. Friction characteristics of microtextured surfaces under mixed and hydrodynamic lubrication[J]. Tribology International,2013,57:170−176.
[39] 丛茜,金敬福,张宏涛,等. 仿生非光滑表面在混合润滑状态下的摩擦性能[J]. 吉林大学学报 (工学版),2006,36(3):363−366.
CONG Qian,JIN Jingfu,ZHANG Hongtao,et al. Friction performance of bionic non-smooth surfaces with mixing lubrication[J]. Journal of Jilin University (Engineering and Technology Edition),2006,36(3):363−366.
[40] 刘婧,高科,徐小健,等. 新型仿生PDC齿高效切削机理及试验研究[J]. 探矿工程 (岩土钻掘工程),2013,40(12):5−8.
LIU Jing,GAO Ke,XU Xiaojian,et al. Efficient cutting mechanism of the new bionic PDC teeth and the experimental study[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2013,40(12):5−8.
[41] 孙艺文,汝绍锋,丛茜. 仿生凹坑形钻井泥浆泵活塞磨损寿命试验[J]. 石油学报,2017,38(2):234−240.
SUN Yiwen,RU Shaofeng,CONG Qian. Wear-life experiment of drilling mud pump piston with dimple-shaped bionic surface[J]. Acta Petrolei Sinica,2017,38(2):234−240.
[42] ZHAO Guoping,YUAN Yuhuan,ZHANG Peng,et al. Effects of laser-processed unit distribution density on wear resistance of biomimetic 6082 aluminum alloy[J]. Optics & Laser Technology,2019,112:175−182.
[43] YUAN Yuhuan,ZHAO Guoping,ZHANG Peng,et al. Effects of shapes of biomimetic coupling units on wear resistance of 7075 aluminum alloy[J]. Optics & Laser Technology,2020,121:105786.
[44] ZHAO Guoping,YUAN Yuhuan,ZHANG Peng,et al. Influence of orientations biomimetic units processed by laser on wear resistance of 6082 aluminium alloy[J]. Optics & Laser Technology,2020,127:106196.
[45] YUAN Yuhuan,ZHANG Peng,ZHAO Guoping,et al. Effects of laser energies on wear and tensile properties of biomimetic 7075 aluminum alloy[J]. Journal of Materials Engineering and Performance,2018,27(3):1361−1368.
[46] 杨晓峰,郑海舟,巫世晶. 一种蚯蚓体表仿生结构的钻杆:CN103388456B[P]. 2016-03-02.
[47] 王永龙,孙玉宁,王振锋,等. 软煤层钻进多翼内凹开放式仿生降阻护孔钻杆及钻进方法:CN105545218B[P]. 2018-05-22.
[48] 王永龙,周福宝,王振锋,等. 复杂地质条件煤岩层钻进仿生流纹降阻钻杆及钻进方法:CN106761451B[P]. 2019-08-13.
[49] LIU Zengqian,ZHU Yankun,JIAO Da,et al. Enhanced protective role in materials with gradient structural orientations:Lessons from Nature[J]. Acta Biomaterialia,2016,44:31−40.
[50] ZHAO Zilong,SHU Tao,FENG Xiqiao. Study of biomechanical,anatomical,and physiological properties of scorpion stingers for developing biomimetic materials[J]. Materials Science and Engineering C,2016,58:1112−1121.
[51] MEYERS M A,MCKITTRICK J,CHEN Poyu. Structural biological materials:Critical mechanics-materials connections[J]. Science,2013,339(6121):773−779.
[52] 田喜梅. 典型贝类壳体生物耦合特性及其仿生耐磨研究[D]. 长春:吉林大学,2013.
TIAN Ximei. Study on biocoupling characteristics and biomimetic wear resistance of typical shellfish shells[D]. Changchun:Jilin University,2013.
[53] STUDART A R. Biological and bioinspired composites with spatially tunable heterogeneous architectures[J]. Advanced Functional Materials,2013,23(36):4423−4436.
[54] FANG T H,LI W L,TAO N R,et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper[J]. Science,2011,331(6024):1587−1590.
[55] 闻章鲁. 基于贝壳珍珠层特征的金属仿生设计和电弧增材制造研究[D]. 南京:南京理工大学,2017.
WEN Zhanglu. Research on metal bionic design and arc additive manufacturing based on the characteristics of shell nacre[D]. Nanjing:Nanjing University of Science and Technology,2017.
[56] 张天驰. 基于仿生贝壳的激光增材制造梯度材料研究[D]. 长春:长春理工大学,2020.
ZHANG Tianchi. Study on gradient materials made by laser additive based on bionic shells[D]. Changchun:Changchun University of Science and Technology,2020.
[57] AMADA S,UNTAO S. Fracture properties of bamboo[J]. Composites Part B:Engineering,2001,32(5):451−459.
[58] OBATAYA E,KITIN P,YAMAUCHI H. Bending characteristics of bamboo (Phyllostachys pubescens) with respect to its fiber–foam composite structure[J]. Wood Science and Technology,2007,41(5):385−400.
[59] CHEN Chaoji,LI Zhihan,MI Ruiyu,et al. Rapid processing of whole bamboo with exposed,aligned nanofibrils toward a high-performance structural material[J]. ACS Nano,2020,14(5):5194−5202.
[60] LI S H,ZENG Q Y,XIAO Y L,et al. Biomimicry of bamboo bast fiber with engineering composite materials[J]. Materials Science and Engineering C,1995,3(2):125−130.
[61] 杨光,马一鑫,赵朔,等. 仿生竹纤维五系铝基复合结构强-韧性调控与界面显微组织研究(特邀)[J]. 中国激光,2024,51(10):195−203.
YANG Guang,MA Yixin,ZHAO Shuo,et al. Strength-toughness modulation and interfacial microstructure of bionic bamboo fiber-like aluminum-based composite structures(invited)[J]. Chinese Journal of Lasers,2024,51(10):195−203.
[62] HAN Qigang,SHI Shaoqian,LIU Zhanhang,et al. Study on impact resistance behaviors of a novel composite laminate with basalt fiber for helical-sinusoidal bionic structure of dactyl club of mantis shrimp[J]. Composites Part B:Engineering,2020,191:107976.
[63] HAN Qigang,QIN Hanlin,HAN Zhiwu,et al. Study on mechanical properties of multi-structure dactyl-inspired sandwich honeycomb with basalt fiber[J]. Composite Structures,2020,247:112467.
[64] 寇斐凡,岳赟,杜志浩,等. TiB2含量对TiBx/Ti合金涂层组织及摩擦学性能的影响[J]. 表面技术,2024,53(11):140−149.
KOU Feifan,YUE Bin,DU Zhihao,et al. Effect of TiB2 content on microstructure and tribological properties of TiBx/Ti alloy coatings[J]. Surface Technology,2024,53(11):140−149.
[65] 张帅. 铝合金钻杆材料微弧氧化膜的封闭处理及其耐蚀机理研究[D]. 长春:吉林大学,2024.
ZHANG Shuai. Sealing treatment of micro-arc oxidation film on aluminum alloy drill pipe material and its corrosion resistance mechanism[D]. Changchun:Jilin University,2024.
[66] 王世清,史冰园,张一,等. 钛合金表面仿生高熵合金组织耐磨层及其制备方法和应用:CN114807928A[P]. 2022-07-29.
[67] 熊洪威. 钻杆用玄武岩纤维增强铝基复合材料制备和性能研究[D]. 长春:吉林大学,2022.
XIONG Hongwei. Study on preparation and properties of basalt fiber reinforced aluminum matrix composites for drill pipe[D]. Changchun:Jilin University,2022.
[68] 谢雨凌. 玄武岩纤维增强铝基复合材料的制备及性能研究[D]. 上海:上海交通大学,2013.
XIE Yuling. Preparation and properties of basalt fiber reinforced aluminum matrix composites[D]. Shanghai:Shanghai Jiao Tong University,2013.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons