Coal Geology & Exploration
Abstract
Objective and Methods This study aims to enhance the accuracy of the mine transient electromagnetic method (MTEM) in of imaging of water-bearing goaves. Based on the geological conditions of the Gaojialiang Coal Mine, this study simulated the spatiotemporal response characteristics of the induced magnetic field in the water-bearing goaf model under varying stratigraphic spacings using finite element software COMSOL. Accordingly, this study analyzed the distribution patterns of the induced magnetic field on the apparent resistivity pseudosections and the plots of the differentials of longitudinal apparent conductivity. Using the results, the water-bearing conditions of goaves in the Ordos Gaojialiang Coal Mine were successfully identified during field detection. Results and Conclusions The results indicate that the induced magnetic field in water-bearing bodies exhibited lower decay rates than that in rock layers. The time-varying voltage decay curves can be divided into four distinct stages: the initial stable, relatively slow, relatively rapid, and final stable decay stages sequentially. A greater stratigraphic spacing was associated with an earlier turning point between the initial stable and relatively slow decay stages, longer relatively slow and relatively rapid decay stages, and higher induced voltage. The maximum magnetic induction frequently occurred within the water-bearing goaves, decreasing linearly with an increase in the stratigraphic spacing. The second-order differentials of longitudinal apparent conductivity can effectively identify interfaces between high and low resistivity, with a smaller stratigraphic spacing corresponding to a higher amplitude of the second-order differentials. In the water detection of goaves along mining faces 20302 and 20313 in the Gaojialiang Coal Mine, the turning points of induced-voltage decay occurred at 718.51 μs and 1004.31 μs, respectively. The variations in the voltages between adjacent channels and the second-order differentials of longitudinal apparent conductivity reveal that water accumulation occurred at depths ranging from 36 to 120 m and from 24 to 168 m, respectively laterally and the rock-water interfaces were located at depths of 66 m and 72 m, respectively. These findings were verified through drilling. The results of this study can serve as a guide for water detection and drainage in goaves and hold great significance for ensuring the safe production of mines.
Keywords
mine transient electromagnetic method (MTEM), water-bearing goaf, stratigraphic spacing, spatiotemporal response, numerical simulation
DOI
10.12363/issn.1001-1986.24.04.0247
Recommended Citation
SONG Guilei, GONG Xufei, YANG Fuqiang,
et al.
(2024)
"Spatiotemporal response characteristics of transient electromagnetic field in water-bearing goaves and their applications,"
Coal Geology & Exploration: Vol. 52:
Iss.
12, Article 19.
DOI: 10.12363/issn.1001-1986.24.04.0247
Available at:
https://cge.researchcommons.org/journal/vol52/iss12/19
Reference
[1] 张继锋,孙乃泉,刘最亮,等. 电磁法在煤矿水害隐患探测方面的综述[J]. 煤田地质与勘探,2023,51(2):301−316.
ZHANG Jifeng,SUN Naiquan,LIU Zuiliang,et al. Electromagnetic methods in the detection of water hazards in coal mines:A review[J]. Coal Geology & Exploration,2023,51(2):301−316.
[2] 齐庆杰,孙祚,刘文岗,等. 洪水灾害诱发煤矿水害事故风险评估模型研究[J]. 煤炭科学技术,2023,51(1):395−402.
QI Qingjie,SUN Zuo,LIU Wengang,et al. Study on risk assessment model of coal mine water accident induced by flood disaster[J]. Coal Science and Technology,2023,51(1):395−402.
[3] 曾一凡,武强,赵苏启,等. 我国煤矿水害事故特征、致因与防治对策[J]. 煤炭科学技术,2023,51(7):1−14.
ZENG Yifan,WU Qiang,ZHAO Suqi,et al. Characteristics,causes,and prevention measures of coal mine water hazard accidents in China[J]. Coal Science and Technology,2023,51(7):1−14.
[4] 吴金随,张辞源,尹尚先,等. 近20 a我国煤矿水害事故统计及分析[J]. 煤炭技术,2022,41(6):86−89.
WU Jinsui,ZHANG Ciyuan,YIN Shangxian,et al. Statistics and analysis of coal mine water damage accidents in China in recent 20 years[J]. Coal Technology,2022,41(6):86−89.
[5] 薛国强,李海,陈卫营,等. 煤矿含水体瞬变电磁探测技术研究进展[J]. 煤炭学报,2021,46(1):77−85.
XUE Guoqiang,LI Hai,CHEN Weiying,et al. Progress of transient electromagnetic detection technology for water-bearing bodies in coal mines[J]. Journal of China Coal Society,2021,46(1):77−85.
[6] WEN Laifu,CHENG Jiulong,HUANG Shaohua,et al. Review of geophysical exploration on mined-out areas and water abundance[J]. Journal of Environmental and Engineering Geophysics,2019,24(1):129−143.
[7] YU Chuantao,CHEN Weiying,ZHANG Xi,et al. Review and challenges in the geophysical mapping of coal mine water structure[J]. Geofluids,2022,2022:4578072.
[8] 张欢,彭刘亚. 矿井瞬变电磁场井下人文噪声干扰物理模拟[J]. 工程地球物理学报,2010,7(6):679−683.
ZHANG Huan,PENG Liuya. Effect of human noise of physical simulation experiments on mine transient electromagnetic surveying[J]. Chinese Journal of Engineering Geophysics,2010,7(6):679−683.
[9] 孙怀凤,李貅,卢绪山,等. 隧道强干扰环境瞬变电磁响应规律与校正方法:以TBM为例[J]. 地球物理学报,2016,59(12):4720−4732.
SUN Huaifeng,LI Xiu,LU Xushan,et al. Transient electromagnetic responses in tunnels with strong interferences and the correcting method:A TBM example[J]. Chinese Journal of Geophysics,2016,59(12):4720−4732.
[10] 范涛,赵兆,吴海,等. 矿井瞬变电磁多匝回线电感影响消除及曲线偏移研究[J]. 煤炭学报,2014,39(5):932−940.
FAN Tao,ZHAO Zhao,WU Hai,et al. Research on inductance effect removing and curve offset for mine TEM with multi small loops[J]. Journal of China Coal Society,2014,39(5):932−940.
[11] 姜国庆,程久龙,孙晓云,等. 全空间瞬变电磁全区视电阻率优化二分搜索算法[J]. 煤炭学报,2014,39(12):2482−2488.
JIANG Guoqing,CHENG Jiulong,SUN Xiaoyun,et al. Optimized binary search algorithm of full space transient electromagnetic method all-time apparent resistivity[J]. Journal of China Coal Society,2014,39(12):2482−2488.
[12] 杨海燕,邓居智,张华,等. 矿井瞬变电磁法全空间视电阻率解释方法研究[J]. 地球物理学报,2010,53(3):651−656.
YANG Haiyan,DENG Juzhi,ZHANG Hua,et al. Research on full-space apparent resistivity interpretation technique in mine transient electromagnetic method[J]. Chinese Journal of Geophysics,2010,53(3):651−656.
[13] 于景邨. 矿井瞬变电磁法勘探[M]. 徐州:中国矿业大学出版社,2007.
[14] 刘最亮,王鹤宇,冯兵,等. 基于电性标志层识别的瞬变电磁精准处理技术[J]. 煤炭学报,2019,44(8):2346−2355.
LIU Zuiliang,WANG Heyu,FENG Bing,et al. TEM data accurate processing technology based on electrical marker layer[J]. Journal of China Coal Society,2019,44(8):2346−2355.
[15] 苏茂鑫,李术才,薛翊国,等. 隧道地质预报中的瞬变电磁视纵向电导解释方法研究[J]. 岩土工程学报,2010,32(11):1722−1726.
SU Maoxin,LI Shucai,XUE Yiguo,et al. TEM longitudinal apparent conductivity interpretation in tunnel geological forecast[J]. Chinese Journal of Geotechnical Engineering,2010,32(11):1722−1726.
[16] 张军,马索尼,李貅. 瞬变电磁微分电导深度校正技术研究[J]. 工程地球物理学报,2015,12(4):438−444.
ZHANG Jun,MA Suoni,LI Xiu. A study on differential conductance depth correction based on TEM[J]. Chinese Journal of Engineering Geophysics,2015,12(4):438−444.
[17] 马劼,李貅,戚志鹏,等. 瞬变电磁虚拟波场层状Green函数Born近似成像方法[J]. 地球物理学报,2023,66(6):2631−2645.
MA Jie,LI Xiu,QI Zhipeng,et al. Layered Green function Born approximation imaging method for transient electromagnetic virtual wave fields[J]. Chinese Journal of Geophysics,2023,66(6):2631−2645.
[18] 范克睿,王刚,鲁凯亮,等. 虚拟波场降速条件下电性源瞬变电磁垂直磁场分量的波场反变换方法[J]. 地球物理学报,2023,66(4):1743−1757.
FAN Kerui,WANG Gang,LU Kailiang,et al. Inverse wavefield transform of vertical magnetic signal of galvanic source TEM when slowing down pseudo-wavefield velocity[J]. Chinese Journal of Geophysics,2023,66(4):1743−1757.
[19] 程建远,聂爱兰,张鹏. 煤炭物探技术的主要进展及发展趋势[J]. 煤田地质与勘探,2016,44(6):136−141.
CHENG Jianyuan,NIE Ailan,ZHANG Peng. Outstanding progress and development trend of coal geophysics[J]. Coal Geology & Exploration,2016,44(6):136−141.
[20] QI Zhipeng,ZHANG Yingying,LI Xiu,et al. S-Inversion of electrical source semi-airborne TEM data to determine the electric interface underground[J]. Journal of Applied Geophysics,2022,204:104744.
[21] 翟明华,孙怀凤,范建国,等. 瞬变电磁超前探视纵向电导微分合成孔径成像[J]. 中国矿业大学学报,2019,48(2):422−429.
ZHAI Minghua,SUN Huaifeng,FAN Jianguo,et al. Synthetic aperture algorithm imaging of differential longitudinal apparent conductivity in tunnel transient electromagnetic prediction[J]. Journal of China University of Mining & Technology,2019,48(2):422−429.
[22] QI Tingye,ZHANG Fan,PEI Xiaoming,et al. Simulation research and application on response characteristics of detecting water-filled goaf by transient electromagnetic method[J]. International Journal of Coal Science & Technology,2022,9(1):17.
[23] 叶琼瑶,张军,赵友超,等. 岩溶隧道勘察接地源半航空瞬变电磁三维响应规律研究[J]. 应用基础与工程科学学报,2021,29(5):1108−1123.
YE Qiongyao,ZHANG Jun,ZHAO Youchao,et al. Study on the three-dimensional response law of semi-airborne transient electromagnetic of grounding source for Karst tunnel investigation[J]. Journal of Basic Science and Engineering,2021,29(5):1108−1123.
[24] 孙怀凤,吴启龙,陈儒军,等. 浅层岩溶瞬变电磁响应规律试验研究[J]. 岩石力学与工程学报,2018,37(3):652−661.
SUN Huaifeng,WU Qilong,CHEN Rujun,et al. Experimental study on transient electromagnetic responses to shallow Karst[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(3):652−661.
[25] 牛之琏. 时间域电磁法原理[M]. 长沙:中南大学出版社,2007.
[26] 胡雄武,张平松,严家平,等. 矿井瞬变电磁超前探测视电阻率扩散叠加解释方法[J]. 煤炭学报,2014,39(5):925−931.
HU Xiongwu,ZHANG Pingsong,YAN Jiaping,et al. Spread stack interpretation means of apparent resistivity in roadway advanced detection with transient electromagnetic method[J]. Journal of China Coal Society,2014,39(5):925−931.
[27] 胡雄武,陈人峻,张平松,等. 瞬变电磁共中心零磁通线圈研制与试验[J]. 煤炭学报,2023,48(2):918−930.
HU Xiongwu,CHEN Renjun,ZHANG Pingsong,et al. Development and experiment of transient electromagnetic common centerzero-flux coil[J]. Journal of China Coal Society,2023,48(2):918−930.
[28] 曹华科,戚志鹏,李貅,等. 考虑关断时间的瞬变电磁视电阻率计算及不同波形浅层分辨特征分析[J]. 地球物理学进展,2022,37(4):1704−1716.
CAO Huake,QI Zhipeng,LI Xiu,et al. Transient electromagnetic apparent resistivity calculation considering turn-off time and shallow resolution analysis of different waveforms[J]. Progress in Geophysics,2022,37(4):1704−1716.
[29] 杨海燕,岳建华,李锋平. 斜阶跃电流激励下多匝小回线瞬变电磁场延时特征[J]. 地球物理学报,2019,62(9):3615−3628.
YANG Haiyan,YUE Jianhua,LI Fengping. The decay characteristics of transient electromagnetic fields stimulated by ramp step current in multi-turn small coil[J]. Chinese Journal of Geophysics,2019,62(9):3615−3628.
[30] 李飞,程久龙,温来福,等. 矿井瞬变电磁法电阻率偏低原因分析与校正方法[J]. 煤炭学报,2018,43(7):1959−1964.
LI Fei,CHENG Jiulong,WEN Laifu,et al. Reason and correction of low resistivity problem in mine transient electro-magnetic method[J]. Journal of China Coal Society,2018,43(7):1959−1964.
[31] 张军. 矿井超浅层高分辨率瞬变电磁探测技术[J]. 煤田地质与勘探,2020,48(4):219−225.
ZHANG Jun. The high-resolution transient electromagnetic detection technology for ultra-shallow layer in coal mine[J]. Coal Geology & Exploration,2020,48(4):219−225.
Included in
Earth Sciences Commons, Mining Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons